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Research

Epidemiological studies have provided evi-
dence of an association between short-term 
and long-term exposure to fine particulate 
matter [≤ 2.5 µm in aerodynamic diameter 
(PM2.5)] and risk for premature mortality and 
excess morbidity (Pope and Dockery 2006). 
These studies have focused on the risk associ-
ated with the total mass of particles, without 
considering the heterogeneity in their chemi-
cal composition. The U.S. National Research 
Council Committee on Research Priorities 
for Airborne Particulate Matter identified 
the assessment of PM characteristics associ-
ated with toxicity as a crucial research gap 
(National Research Council 2004), and many 
researchers have called for studies on possible 
differential toxicity of PM based on its com-
ponents (Nel 2005). Toxicologic studies have 
linked different size ranges and constituents of 
PM with various health responses, but few of 
these results have been replicated by epidemi-
ologic studies examining exposures at ambi-
ent concentrations (Schlesinger et al. 2006). 
Given the complex mixture of PM in ambient 
air, characterizing the biological mechanisms 
through which PM harms human health is 
challenging, especially because multiple 
mechanisms are likely to be operative across 

the range of health outcomes associated with 
exposure to PM. Currently, many hypotheses 
have been advanced (Brook et al. 2004; Pope 
and Dockery 2006; Schlesinger et al. 2006), 
but understanding of mechanisms is not yet 
sufficient to integrate what is known about 
the characteristics of PM in ambient air with 
the epidemiologic and toxicologic findings 
(Kaufman 2007).

Limited understanding of the differen-
tial toxicity of various components of the 
PM mixture also hinders control programs 
intended to reduce the public health burden 
of morbidity and mortality from airborne 
PM. Present measures to reduce the health 
effects of ambient PM depend largely on con-
trolling the emission sources that contribute 
the most to PM mass. Promulgating more 
targeted air quality standards or guidelines 
incorporating PM chemical components, 
other characteristics, or specific sources of 
PM (e.g., traffic vs. electrical utilities) requires 
a more complete scientific foundation than is 
currently available.

The availability of PM2.5 component data 
from the U.S. Environmental Protection 
Agency (EPA) allows us to examine at a 
population level the heterogeneity in toxicity 

of PM2.5 components. In previous work we 
identified seven components of PM2.5 that 
contribute most of the PM2.5 total mass or 
that covary closely with PM2.5 total mass (Bell 
et al. 2007). We also reported evidence of an 
association between PM2.5 total mass and 
hospital admissions in the Medicare popula-
tion for the period 1999–2005 for 204 U.S. 
counties (Dominici et al. 2006; Peng et al. 
2008) and examined the associations of the 
coarse fraction of PM [> 2.5 and ≤ 10 µm 
in aerodynamic diameter (PM10–2.5)] with 
hospital admissions for 108 U.S. counties 
(Peng et al. 2008). For the present study, we 
used time-series approaches and estimated the 
association between the seven PM2.5 chemical 
components and risk of hospital admissions 
among Medicare enrollees for cardiovascular 
disease (CVD) and respiratory disease over 
the period 2000–2006.

Methods
We obtained daily counts of hospital admis-
sions for the period 2000–2006 from bill-
ing claims of enrollees in the U.S. Medicare 
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Background: Population-based studies have estimated health risks of short-term exposure to fine 
particles using mass of PM2.5 (particulate matter ≤ 2.5 µm in aerodynamic diameter) as the indica-
tor. Evidence regarding the toxicity of the chemical components of the PM2.5 mixture is limited.

oBjective: In this study we investigated the association between hospital admission for cardiovascular 
disease (CVD) and respiratory disease and the chemical components of PM2.5 in the United States.

Methods: We used a national database comprising daily data for 2000–2006 on emergency hospi-
tal admissions for cardiovascular and respiratory outcomes, ambient levels of major PM2.5 chemical 
components [sulfate, nitrate, silicon, elemental carbon (EC), organic carbon matter (OCM), and 
sodium and ammonium ions], and weather. Using Bayesian hierarchical statistical models, we esti-
mated the associations between daily levels of PM2.5 components and risk of hospital admissions in 
119 U.S. urban communities for 12 million Medicare enrollees (≥ 65 years of age). 

results: In multiple-pollutant models that adjust for the levels of other pollutants, an interquartile 
range (IQR) increase in EC was associated with a 0.80% [95% posterior interval (PI), 0.34–1.27%] 
increase in risk of same-day cardiovascular admissions, and an IQR increase in OCM was associated 
with a 1.01% (95% PI, 0.04–1.98%) increase in risk of respiratory admissions on the same day. 
Other components were not associated with cardiovascular or respiratory hospital admissions in 
multiple-pollutant models.

conclusions: Ambient levels of EC and OCM, which are generated primarily from vehicle emis-
sions, diesel, and wood burning, were associated with the largest risks of emergency hospitalization 
across the major chemical constituents of PM2.5.
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system. Because the Medicare data analyzed 
for this study did not include individual 
identifiers, we did not obtain consent from 
individuals. This study was reviewed and 
exempted by the Institutional Review Board 
at the Johns Hopkins Bloomberg School of 
Public Health.

Each billing claim contains the date of ser-
vice, disease classification using International 
Classification of Diseases, 9th Revision (ICD-9) 
codes (Centers for Disease Control and 
Prevention 2008), age, and county of resi-
dence. We considered two broad classes of 
outcomes based on ICD-9 codes: urgent or 
emergency cardiovascular admissions and 
urgent or emergency respiratory admissions. 
The classification of “urgent” and “emergency” 
is designated directly on each Medicare hospi-
tal admissions record. We excluded other clas-
sifications, such as “elective.” A recent study 
(Dominici et al. 2006) considered a number 
of different cardiovascular and respiratory 
outcomes. Because of the sparser sampling of 
the PM2.5 component data compared with 
the PM2.5 total mass data, to obtain suffi-
cient statistical power we collapsed the data 
into two broad categories of hospital admis-
sions: a) CVD, which includes heart failure 
(ICD-9 code 428), heart rhythm disturbances 
(426–427), cerebrovascular events (430–438), 
ischemic heart disease (410–414, 429), and 
peripheral vascular disease (440–448); and 
b) respiratory diseases, which include chronic 
obstructive pulmonary disease (490–492) and 
respiratory infection (464–466, 480–487). 
We excluded admissions for injuries and for 
external causes (800–849). By collapsing these 
health outcomes, we increased statistical power 
and obtained more stable estimates of risk at 
the cost of some specificity of the outcome.

We analyzed each outcome (respiratory or 
cardiovascular admissions) separately. We cal-
culated the daily counts of hospitalizations by 

summing the hospital admissions for each dis-
ease of interest recorded as a primary diagno-
sis. To calculate daily hospitalization rates, we 
constructed a parallel time series of the num-
bers of individuals enrolled in Medicare that 
were at risk in each county on each day. We 
based the location of each hospital admission 
on the county of residence of the enrollee.

The U.S. EPA established the PM 
Speciation Trends Network (STN) to mea-
sure more than 50 PM2.5 chemical compo-
nents, in addition to total mass. The STN 
includes > 50 national air monitoring stations 
(NAMS) and > 200 state and local air moni-
toring stations (SLAMS) (U.S. EPA 1999). 
Air pollution concentrations were typically 
measured on a 1-in-3–day schedule in the 
NAMS and on a 1-in-6–day schedule in 
the SLAMS. We removed suspect data and 
extreme values from the original monitor 
records; monitors with very little data were 
omitted altogether. Full details of the con-
struction of the database can be found else-
where (Bell et al. 2007). We also used PM2.5 
total mass measurements from the U.S. EPA’s 
Air Quality System as in our previous analyses 
(Dominici et al. 2006). Of the 187 counties 
described in the Bell et al. (2007) analysis, we 
restricted the present analysis to counties with 
general populations larger than 150,000 and 
with at least 100 observations on components 
of PM2.5. These requirements ensured that 
we would have enough data in a particular 
location to estimate an association between 
PM2.5 components and hospital admissions. 
The study population consisted of 12 million 
Medicare enrollees living in 119 urban coun-
ties in the United States (Figure 1).

We limited our analysis to the compo-
nents making up a large fraction of the total 
PM2.5 mass or covarying with total mass (Bell 
et al. 2007): sulfate, nitrate, silicon, elemental 
carbon (EC), organic carbon matter (OCM), 

sodium ion, and ammonium ion. These seven 
components, in aggregate, constituted 83% of 
the total PM2.5 mass, whereas all other com-
ponents individually contributed < 1%. We 
computed countywide averages for each of 
these components and for PM2.5 total mass 
by averaging the daily values from all moni-
tors in a county. We adjusted organic car-
bon measurements for field blanks to estimate 
OCM. We used a standard approach such 
that OCM = k(OCm – OCb), where OCM 
represents organic carbon matter, OCm rep-
resents measured organic carbon, OCb repre-
sents organic carbon for blank filters, and k 
is the adjustment factor to account for non-
carbon organic matter. We applied a k value 
of 1.4, as in a previous analysis (Bell et al. 
2007). We obtained temperature and dew-
point temperature data from the National 
Climatic Data Center on the Earth-Info CD 
database (EarthInfo 2006).

As a check on the consistency of the 
chemical component data, we first assessed 
whether three different PM2.5 indicators (four 
scenarios total) provided comparable estimates 
of the short-term associations of PM2.5 with 
cardiovascular and respiratory admissions: 
PM2.5 (1), PM2.5 measured by the national 
PM2.5 monitoring network for the period 
1999–2006; PM2.5 (1a), PM2.5 (1) for the 
period 2000–2006 and including only days 
with available measurements for all the seven 
PM2.5 components from the STN; PM2.5 (2), 
PM2.5 measured by the STN for the period 
2000–2006 and including only days with 
available measurements for all the seven PM2.5 
components from the STN; and PM2.5 (3), 
PM2.5 estimated as the sum of the seven larg-
est components of PM2.5 mass for the period 
2000–2006. Significant differences between 
these estimates would raise uncertainty as to 
the recorded values of PM2.5 total mass and 
its components. The estimates obtained under 
the scenarios 1a, 2, and 3 use data on the 
same subset of days. Each of these measures of 
PM2.5 was available in all 119 counties.

We estimated the within-county mon-
itor-to-monitor correlation for each of the 
seven PM2.5 components to obtain a measure 
of the spatial homogeneity of each compo-
nent. For this calculation we used a subset of 
12 counties that had more than one moni-
tor (27 monitors total): Jefferson, Alabama; 
Washington, DC; Cook, Illinois; Jefferson, 
Kentucky; Wayne, Michigan; Bronx, 
New York; Cuyahoga, Ohio; Allegheny, 
Pennsylvania; Philadelphia, Pennsylvania; 
Providence, Rhode Island; King, Washington; 
and Kanawha, West Virginia. We computed 
correlations only if at least 90 paired observa-
tions were available between two monitors. 
We also estimated the median within-county 
correlations between the seven PM2.5 compo-
nents, and the three measures of PM2.5 total 

Figure 1. U.S. counties with populations larger than 150,000 for which sufficient hospital admissions and 
PM2.5 chemical component data were available, 2000–2006 (119 total).
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mass by a) estimating the correlations between 
time series data for each pair of air pollutants 
within each county and b) taking the median 
of the estimated correlations across the 119 
counties. As a separate measure of spatial 
homogeneity, we calculated, for each of the 
seven components and using all monitors, 
the distance at which the correlation between 
pairs of monitors was 0.5 on average.

We applied Bayesian hierarchical statis-
tical models to estimate county-specific and 
national average associations between daily 
variation in the seven PM2.5 chemical compo-
nents and daily variation in hospital admissions 
rates. This approach was originally developed 
for the National Morbidity, Mortality, and Air 
Pollution Study (Bell et al. 2004; Samet et al. 
2000) and subsequently extended (Dominici 
et al. 2006) to provide a consistent and unified 
methodology for analyzing data from multiple 
locations. We fit log-linear Poisson regression 
models with overdispersion to county-specific 
time-series data on hospital admissions and 
chemical components, accounting for poten-
tial confounders such as weather, day of the 
week, unobserved seasonal factors, and long-
term trends. In each county-specific regression 
model, we included an indicator for the day 
of the week, a smooth function of time with 
8 degrees of freedom (df) per calendar year to 
control for seasonality and long-term trends, a 
smooth function of current-day temperature 
(6 df), a smooth function of the 3-day running 
mean temperature (6 df), a smooth function 
of current-day dew-point temperature (3 df), 
and a smooth function of the 3-day running 
mean dew-point temperature (3 df). For all of 
the smooth functions we used a natural spline 
basis. We conducted a sensitivity analysis with 
respect to the smooth function of time to 
determine the degree to which risk estimates 
changed with varying levels of adjustment for 
smooth unmeasured confounders. Although 
other information about Medicare enrollees 
is available, such as sex and race, we excluded 
these factors from all models because they do 
not vary over time and should not play a role 
in our time series analysis.

For the exposure concentrations, we 
examined 0-, 1-, and 2-day lag concentra-
tions because our previous work with PM2.5 
total mass and hospital admissions showed 
little evidence of a strong association with 
admissions at a lag of ≥ 3 days (Dominici 
et al. 2006). We examined each lag separately 
because the 1-in-6–day sampling of the chem-
ical component data from the STN prohib-
ited the use of distributed lag models where 
all lags can be examined simultaneously.

For estimating the health effects of the 
PM2.5 components, we employed single-
pollutant and multipollutant models. In 
single-pollutant models, we included each 
PM2.5 component in the regression model 

individually, without adjusting for any other 
chemical component (the model does adjust 
for other time-varying factors). In multipol-
lutant models, we included PM2.5 compo-
nents simultaneously to obtain estimates 
of the regression coefficients for each com-
ponent adjusted for the other components. 
Ammonium was excluded from models that 
included sulfate and nitrate because of the 
high correlation among these three compo-
nents. We included ammonium in a separate 
multipollutant model that did not include 
sulfate or nitrate but included the remaining 
four components.

We combined the county-specific risk 
estimates to form a national average using a 
Bayesian hierarchical model. In the single-
pollutant models, we combined the log-rela-
tive risks separately for each pollutant using 
TLNise two-level normal independent sam-
pling estimation software (Everson and Morris 
2000). For the multiple-pollutant models, 
the risks were treated as a vector for each 
county and combined using a multivariate 
normal hierarchical model. We used Markov 
chain Monte Carlo methods to obtain the 
posterior distribution of the national average 
component effects. We assessed statistical sig-
nificance by the posterior probability that the 
national average relative risk for a component 
was greater than zero. Values of the posterior 
probability > 0.95 were considered statisti-
cally significant (Dominici et al. 2006; Peng 
et al. 2008).

We evaluated whether the relative risks 
of each PM2.5 component in a multipollut-
ant model were equal. In this analysis, the 
risks represent the percent increase in admis-
sions associated with a 1-µg/m3 increase in 
each PM2.5 component in a multipollutant 
model. We assessed the evidence against equal 
component risks using a chi-square statistic 
applied to the national average estimates. We 
also estimated the posterior probability that 
the coefficient for a particular component was 

greater than the mean of the coefficients for 
the other components.

For statistical calculations we used R sta-
tistical software, version 2.7.0 (R Foundation 
for Statistical Computing, Vienna, Austria).

Results
Table 1 summarizes median, interquartile 
range (IQR), within-county monitor-to-mon-
itor correlations, and percent contribution for 
each of the seven components of the PM2.5 
total mass. We also calculated these statistics 
for the three indicators of PM2.5 total mass. 
The IQRs calculated here are medians of the 
within-county IQRs for the 119 counties, 
which indicate typical daily variation for each 
chemical component. This study used a total 
of 134 monitors measuring PM2.5 chemi-
cal components in 119 counties. Counties 
included in the study ranged in size from 
23 square miles (New York County, NY) to 
9,203 square miles (Maricopa County, AZ), 
with a median of 581 square miles in area. 
The median daily rates of admission per 
100,000 for CVD and respiratory disease 
were 19.1 and 6.9, respectively, and the cor-
responding IQRs were 10.4 and 6.4.

The PM2.5 components that constitute a 
large fraction of PM2.5 mass had high correla-
tion within counties. The distance at which 
the correlation between pairs of monitors was 
0.5 on average was 285 miles for sulfate, 302 
miles for nitrate, 188 miles for silicon, 109 
miles for EC, 209 miles for OCM, 9 miles for 
sodium ion, and 210 miles for ammonium.

Table 2 summarizes the estimated cor-
relations between the daily concentrations of 
county-specific time series for pairs of com-
ponents. Although in the atmosphere the 
particle composition includes compounds 
such as ammonium sulfate and ammonium 
nitrate, the measurement strategy of the STN 
measures ammonium, sulfate, and nitrate 
separately. Therefore, concentrations of sul-
fate and ammonium as well as of nitrate and 

Table 1. Median and IQR values, within-county monitor-to-monitor correlations, and percent contribution 
for each of the seven components to the PM2.5 total mass, for 119 U.S. counties. 

   Within-county 

PM2.5 component Median (µg/m3) IQR (µg/m3) correlation (min–max) Percent PM2.5 mass

Sulfate 2.62 3.06 0.94 (0.77–0.99) 26
Nitrate 0.97 1.64 0.92 (0.78–0.99) 12
Silicon 0.07 0.07 0.63 (0.22–0.95) 1
EC 0.58 0.40 0.68 (0.42–0.85) 5
OCM 3.50 3.18 0.77 (0.53–0.93) 28
Sodium ion 0.09 0.11 0.43 (0.07–0.79) 1
Ammonium 1.18 1.35 0.91 (0.68–0.98) 11
Total mass
 PM2.5 (1) 11.79 9.38 0.85 (0.83–0.95) 
 PM2.5 (2) 12.20 9.51 0.86 (0.73–0.99) 
 PM2.5 (3) 10.40 8.09 0.86 (0.71–0.94) 

Abbreviations: max, maximum; min, minimum. Values are medians of the within-county values across all counties for the 
given statistic. Median (min–max) of the within-county monitor-to-monitor correlations of the seven components and 
of PM2.5 (2) and PM2.5 (3) were calculated using 27 monitors from 12 counties and only monitor pairs with more than 90 
paired observations. Median and IQR (25th–75th percentiles) of the within-county monitor-to-monitor correlations of 
PM2.5 (1) using 401 monitors from 96 counties.
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ammonium are highly correlated, with mean 
correlation coefficients of 0.83 and 0.52, 
respectively. The correlation between concen-
trations of ammonium and nitrate is close to 
0.95 in some counties on the West Coast.

We found that national average estimates 
obtained using the different measures of 
PM2.5 from the STN were generally consis-
tent with previous findings, given the statisti-
cal uncertainties. Figure 2 shows the national 
average estimates and 95% posterior inter-
vals (PIs) of the percent increases in emer-
gency admissions for CVD (Figure 2A) and 
respiratory diseases (Figure 2B) associated 
with PM2.5 using three different indicators. 
Estimates obtained by restricting the data to 
days with available data from the STN (sce-
narios 1a, 2, and 3) have wider PIs because of 
the sparser sampling rate of the STN moni-
tors. For scenario 1, on average, 1,896 days 
had observations for each county. For the 
remaining scenarios, on average, 410 days had 
observations for each county.

For the cardiovascular outcome, all four 
estimates show strong evidence of an asso-
ciation between PM2.5 and hospital admis-
sions on the same day. Under scenario 1a, 
a 10-µg/m3 increase in PM2.5 is associ-
ated with a 0.64% (95% PI, 0.12–1.15%) 
increase, and under scenario 2, a 0.68% (95% 
PI, 0.26–1.10%) increase in hospital admis-
sions for CVD. For respiratory outcomes, 

the evidence of an association between PM2.5 
and hospital admissions was not as strong: 
under scenario 1a, a 0.44% (95% PI, –0.36 to 
1.23%) increase in admissions, and under sce-
nario 2, a 0.31% (95% PI, –0.38 to 1.01%) 
increase for a 10-µg/m3 increase in PM2.5. 
Although the point estimates are very similar, 
the uncertainty reflected in the PIs is much 
greater when restricted to days with measure-
ments on the PM2.5 components from the 
STN (scenarios 1a, 2, 3). For both outcomes, 
lag 0 was specifically selected because previ-
ous work on PM2.5 total mass and hospital 
admissions showed that lag 0 exposure had the 
strongest association with cardiovascular and 
respiratory outcomes (Dominici et al. 2006).

Figure 3 shows national average estimates 
and 95% PIs for the percent increase in hos-
pital admissions for CVD and respiratory dis-
eases per IQR increase in each of the PM2.5 
components, obtained from single-pollutant 
(top rows) and multipollutant models (bot-
tom rows). Figure 3A indicates a positive and 
statistically significant association between 
CVD admissions and increases in nitrate, 
EC, OCM, and ammonium at lag 0 (same 
day) in single-pollutant models. We estimated 
that IQR increases in nitrate, EC, OCM, and 
ammonium were associated with 0.46% (95% 
PI, 0.17–0.75%), 0.72% (95% PI, 0.43–
1.01%), 0.66 (95%% PI, 0.29–1.02%), and 
0.68% (95% PI, 0.31–1.06%) increases in 

CVD admissions, respectively. In multipol-
lutant models (Figure 3B), most risk estimates 
were reduced, unlike in the single-pollutant 
models. However, statistically significant asso-
ciations remained, with an IQR increase in 
EC at lag 0 associated with a 0.80% (95% PI, 
0.34–1.27%) increase in CVD admissions and 
an IQR increase in OCM at lag 1 associated 
with a 0.63% (95% PI, 0.06–1.19%) increase.

The association between respiratory 
admissions and OCM at lag 0 was statisti-
cally significant in single-pollutant models 
(Figure 3B). An IQR increase in OCM at 
lag 0 was associated with a 0.82% (95% PI, 
0.22–1.44%) increase in respiratory admis-
sions. In multipollutant models, we found 
statistically significant associations, with IQR 
increases in OCM at lag 0 and lag 2 associ-
ated with 1.01% (95% PI, 0.04–1.98%) and 
1.07% (95% PI, 0.12–2.04%) increases in 
respiratory admissions, respectively.

We evaluated whether the health risks for 
each PM2.5 component in a multipollutant 
model were all equal. We found statistically 
significant heterogeneity in the toxicity of the 
components at lag 0 concentration for both 
the CVD and respiratory outcomes, indicating 
different degrees of toxicity. The Bayesian hier-
archical model used here also provides a pos-
terior probability distribution (given all of the 
observed data) for each of the risk parameters 
of interest. With this posterior distribution, we 
can calculate the posterior probability that a 
given estimate is larger than the average of the 
other five coefficients. For the CVD outcome, 
the posterior probability that the national aver-
age EC coefficient for lag 0 concentration was 
larger than the average of the other five coeffi-
cients in the multipollutant model was 0.99.

Sensitivity analysis indicated that results 
were not sensitive to changes in df for the 
smooth functions of time (ranging from 2 to 
14 df per year), temperature, or dew-point 
temperature.

Discussion
We conducted a multisite time series study to 
identify any major components of PM2.5 that 
were strongly associated with risk for hos-
pitalization and found evidence of differing 
health risks across the components. We found 
that ambient levels of EC and OCM, which 
are generated primarily from vehicle emis-
sions, diesel engines, and wood burning, were 
associated with the largest risk of emergency 
hospital admissions for CVD and respiratory 
disease in both single- and multiple-pollutant 
models. Furthermore, in multipollutant mod-
els we found evidence that the risk of cardio-
vascular admission associated with a same-day 
EC concentration was larger than the risks 
associated with any other component.

Our results add to those previously 
reported in several important ways. First, we 

Table 2. Median (across counties) correlation between daily concentrations of time series for pairs of 
 pollutants.

 Sulfate Nitrate OCM EC Silicon Sodium ion Ammonium PM2.5 (1) PM2.5 (2) PM2.5 (3)

Sulfate          
Nitrate 0.09         
OCM 0.38 0.25        
EC 0.18 0.33 0.64       
Silicon 0.18 –0.04 0.22 0.14      
Sodium ion 0.10 0.12 0.10 0.03 0.10     
Ammonium 0.83 0.52 0.45 0.33 0.11 0.04    
PM2.5 (1) 0.76 0.39 0.68 0.46 0.22 0.07 0.85   
PM2.5 (2) 0.73 0.39 0.68 0.47 0.26 0.09 0.82 0.91  
PM2.5 (3) 0.75 0.48 0.78 0.55 0.20 0.13 0.88 0.92 0.91

PM2.5 (1), PM2.5 (2), and PM2.5 (3) indicate different PM2.5 scenarios.

Figure 2. National average estimates and 95% PIs of the percent increases in emergency admissions for 
(A) CVD and (B) respiratory disease associated with PM2.5 at lag 0 under the four scenarios: PM2.5 (1), 
PM2.5 (1a), PM2.5 (2), and PM2.5 (3). The estimates obtained under scenarios 1a, 2, and 3 use data on the 
same exact subset of days. 
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used the largest database on chemical com-
ponents of PM2.5 available on a national 
scale and found that ambient levels of EC 
and OCM were the most toxic components 
with respect to risk of emergency hospital-
ization for CVD and respiratory disease. 
These results, based on a large human popu-
lation and using real-world concentrations 
of PM components, provide a much more 
complete picture of the health effects of PM 
chemical components than previously avail-
able. Second, the findings for EC and OCM, 
together with the weak evidence of harmful 
effects from the other components, substan-
tially narrow the potential range of inves-
tigation and will aid the design of targeted 
mechanistic studies to test for parallel differ-
ential toxicity of these components in bioas-
says and to identify mechanisms of injury by 
these particular PM components. Such work 
may further lead to indications of appropriate 
biomarkers and the identification of sensitive 
subpopulations (Nel 2005). Third, this study 
indicates sources of PM air pollution that 
could be targeted as part of a comprehensive 
air quality control strategy. Because ambient 
particles are produced by numerous emis-
sion sources, any individual particle compo-
nent identified as having an association with 
a health outcome may be acting as a marker 
for other components or a set of components 
with similar sources. For example, EC results 
from combustion of fossil fuels, including 
transportation sources such as diesel, but also 
from the combustion of biomass and coal and 
from industry (Health Effects Institute 1995). 
OCM also comes from vehicles, as well as 
from coal and oil combustion, industry, and 
vegetative burning. Finally, the statistical tools 
we have developed for this study represent a 
reproducible methodology that can be applied 
to other similar databases for studying the 
health effects of complex mixtures.

A few epidemiologic studies have inves-
tigated the potential toxicity of the PM2.5 
chemical components on local or regional 
scales. In several of these studies, PM com-
ponents have been examined as independent 
predictors, whereas one study used factor 
analysis of the Six Cities Study data to trace 
components back to their sources (Laden et al. 
2000). Overall, the epidemiologic evidence 
linking particular PM components to health 
risks is mixed (Anderson et al. 2001; Burnett 
et al. 1997; Chuang et al. 2007; Dominici 
et al. 2007; Laden et al. 2000; Lippmann 
et al. 2006; Metzger et al. 2004; Ostro et al. 
2007, 2008; Sarnat et al. 2006; Tolbert 
et al. 2000; Zanobetti and Schwartz 2006). 
Differences in findings may reflect the diver-
sity of the study locations, health outcomes, 
or the analytic methods.

In our national study, cardiovascular 
admissions were most strongly associated with 

EC. Several other single-city or regional studies 
found associations between cardiovascular out-
comes and EC. Ostro et al. (2007) found that 
risk of daily cardiovascular mortality increased 
by 2.1% (95% CI, 0.3–3.9) for a 0.8-µg/m3 
increase in EC at a 3-day lag in a study of six 
California counties and, in a separate study, 
found that this association was stronger among 
people without a high school education (Ostro 
et al. 2008). Metzger et al. (2004) found statis-
tically significant associations between EC and 
cardiovascular emergency department visits in 
Atlanta, Georgia, in single-pollutant models, 
as did Tolbert et al. (2000). These findings for 
EC point to a role for transportation sources 
in causing adverse health effects (Sarnat et al. 
2008). Two source-directed analyses are simi-
larly indicative: the Six Cities Study analysis by 
Laden et al. (2000) and a study of daily emer-
gency room admissions in Boston (Zanobetti 
and Schwartz 2006). Lanki et al. (2006) exam-
ined five source indicators in data for Helsinki, 
Finland, and found that in multipollutant 
models, only EC was associated with ST seg-
ment depressions in elderly nonsmoking per-
sons with stable coronary heart disease.

We also found evidence for association of 
OCM with respiratory admissions. In California, 
Ostro et al. (2007) found that the risk of cardio-
vascular mortality increased by 1.6% (95% CI, 
–0.1 to 3.2) per 4.6 µg/m3 increase in OCM 
with a 3-day lag but did not find strong associa-
tions with respiratory mortality. An association 
of OCM with cardiovascular emergency depart-
ment visits was also found in Atlanta (Metzger 
et al. 2004; Tolbert et al. 2000).

EC and OCM were somewhat corre-
lated on average (correlation = 0.64), and any 
reduction in effect size of either component 
when moving from the single-pollutant to the 
multipollutant model could be a result of this 
correlation. However, as with all results from 
multiple regression models, it is difficult to 
identify a single reason for changes in the risk 
estimates between the single-pollutant and 
multipollutant models. Correlation between 
pollutants in the model is one possibility, 
although not all of the pollutants examined 
here were highly correlated with each other. 
Another factor is the correlation of the pollut-
ants with measured and unmeasured potential 
confounders, such as season and weather.

Figure 3. National average estimates and 95% PIs for the percent increase in hospital admissions for CVD 
(A) and respiratory disease (B) per IQR increase in each of the seven PM2.5 components in 119 U.S. coun-
ties during 2000–2006: single-pollutant model (S; top row) and multipollutant model (M; bottom row). The 
multipollutant model (M*) for ammonium excludes sulfate and nitrate.
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Ammonium ion was also strongly associ-
ated with cardiovascular admissions in single-
pollutant models, although this association 
lost statistical significance when adjusted for 
other pollutants in the multipollutant model. 
The large effect observed in the single-pollut-
ant model may result from another PM com-
ponent that is correlated with ammonium 
ion. In addition, relatively little coherent evi-
dence supports a role for ammonium ion and 
other secondary inorganic aerosols in causing 
adverse health effects (Schlesinger et al. 2006).

The evidence of increased risk of car-
diovascular admissions and EC reported in 
this article is consistent with recent toxi-
cologic findings. Biological responses have 
been shown to vary across characteristics 
and components of PM (Obot et al. 2004). 
Mechanisms by which inhaled particles may 
adversely affect cardiovascular and respira-
tory health have been proposed (Kendall 
et al. 2004; O’Neill et al. 2007), but specific 
mechanisms that might contribute to greater 
toxicity of particles with higher EC or OCM 
levels have not yet been identified (Pope and 
Dockery 2006). Toxicologic and epidemio-
logic studies have examined adverse health 
outcomes such as inflammation, oxidative 
stress, and alterations in cardiovascular func-
tion associated with particles (Schlesinger 
et al. 2006). In a study of young healthy 
adults, exposure to the OCM and EC com-
ponents of concentrated ambient particles was 
linked with decreased brachial artery diameter 
(Urch et al. 2004). Associations have also been 
found between carbon black exposure and 
altered heart rate variability (Tankersley et al. 
2004). The larger effect estimated for same-
day EC is consistent with the literature on 
the biological mechanisms of CVD associated 
with short-term exposure to PM (Brook et al. 
2004). Direct effects of PM can be associated 
with rapid cardiovascular responses such as 
increased myocardial infarctions and ischemia 
(e.g., Peters et al. 2001; Pope et al. 2006).

Measurement error due to a combina-
tion of instrument and laboratory error could 
affect our results because of biased measure-
ments of the PM2.5 components. In particu-
lar, there is considerable uncertainty regarding 
the measurement of OCM because results 
depend on laboratory techniques and opera-
tional protocols (Kim et al. 2005). The U.S. 
EPA has conducted a quality assurance study 
of laboratories handling STN filter samples 
and the results indicate that, although there 
was some variability between laboratories 
(particularly for lower mass components, such 
as aluminum and sodium, and for specific 
subfractions of OCM), there was general con-
sistency between the laboratories for most 
PM2.5 components (U.S. EPA 2005).

Exposure measurement error, which 
occurs when the monitor measurement of 

concentration is not representative of the expo-
sure experienced by the study population, is 
also of concern. Our data and previous studies 
show that although PM2.5 total mass is rela-
tively homogeneous within counties (Dominici 
et al. 2006), components with smaller contri-
butions to total mass had lower within-county 
correlations. We would therefore expect that 
the countywide average for such components 
would be a poorer surrogate for personal expo-
sure. To assess the potential effect of exposure 
measurement error for EC and OCM, we fit 
a separate measurement error model (Carroll 
et al. 2006) to adjust for spatial variability of 
each component [for details of the statistical 
models, see Supplemental Material (http://
www. ehponline.org/members/2009/0800185/
suppl.pdf)]. The national average associations 
of EC and OCM with cardiovascular and 
respiratory outcomes did not show qualita-
tive differences. Another potential reason for 
exposure misclassification in this analysis is 
our restriction to more populous counties, 
which generally have substantial geographic 
areas. However, smaller cities (i.e., with 
< 150,000 residents) would likely produce risk 
estimates with greater uncertainties because 
of the smaller numbers of events. Hence, 
these estimates would be down-weighted 
when combined in our Bayesian hierarchical 
model and would likely contribute little to the 
 overall results.

One limitation of this study is the 
1-in-6–day sampling of PM2.5 chemical com-
ponents dictated by the U.S. EPA’s monitor-
ing schedule for the STN and other networks. 
Although we were able to estimate statistically 
significant short-term effects of single-lag con-
centrations, we were not able to fit distributed 
lag models that estimate cumulative short-term 
effects spread over multiple days. However, at 
this point the nature of this data set is a limita-
tion to all researchers conducting national-level 
epidemiologic investigations of PM compo-
nents. Although the national average estimates 
for a single lag might be an underestimate of 
the cumulative effect over a few days from the 
exposure, the single-lag effects estimated here 
nevertheless indicate a significant health risk 
from PM2.5 components.

Another limitation on the interpretation 
of our results is that our definitions of cardio-
vascular and respiratory admissions, which 
both include multiple ICD-9 diagnostic 
codes, reduce the specificity of the estimated 
associations compared with more narrowly 
defined disease categories. However, the ben-
efit of our approach is the increased power to 
detect associations between chemical compo-
nents and hospital admissions. Previous work 
(Dominici et al. 2006) examined the associa-
tion between PM2.5 total mass and more spe-
cific CVD and respiratory disease categories 
and found that there was a strong association 

with all categories. Here, as in many studies, 
we had to strike a balance between power and 
specificity of the outcome.

Estimating effects of PM2.5 components 
is challenging because of their multiple and 
shared sources. We addressed this challenge 
by fitting multipollutant models to the larg-
est national dataset available for the United 
States. EC and OCM, which we found to be 
the most injurious, are both found primarily 
in the fine fraction PM (PM2.5) as opposed 
to the coarse fraction (PM10–2.5). Our recent 
findings that PM2.5 is more injurious than 
coarse PM (Peng et al. 2008) is therefore 
consistent with the results reported here. The 
monitoring networks used in this study (the 
STN) are sited in or near urban communities, 
so the ambient exposures measured reflect the 
pollutant mix found in those communities. 
In addition, although we have made use of 
the U.S. EPA’s publically available national 
data on PM components, the geographic 
distribution of the monitors, determined by 
the U.S. EPA according to a variety of fac-
tors, is not uniform throughout the coun-
try. Hence, the sample of counties used in 
this analysis contains many counties from the 
industrial Midwest and Northeast regions of 
the  country.

Although understanding the precise bio-
logical mechanism of injury from PM remains 
challenging, opportunities for developing tar-
geted interventions for reducing ambient lev-
els of PM air pollution are already apparent. 
Our results for EC and OCM suggest that the 
control strategies targeting their sources could 
be effective at reducing the public health bur-
den attributable to PM. Given the U.S. EPA’s 
approach in the past to setting National 
Ambient Air Quality Standards, the evidence 
requirements will likely be high before any 
move toward standards or guidelines based 
on composition or sources can be made. This 
study, along with the related work of oth-
ers, provides a substantial evidence base upon 
which further research into more refined air 
quality control strategies can be conducted.
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