
Introduction

A prospective randomized controlled trial assesses the effects 
of a single explanatory variable on its primary outcome variable 
and the unknown effects of the other explanatory variables are 

minimized by randomization [1]. However, in observational or 
retrospective studies, randomization is not performed before 
the collection of data and there exist the confounding effects of 
explanatory variables other than the one of interest. To control 
the confounding effects on a single response variable, multivari-
able regression analyses are used. However, most of the time, 
explanatory variables are intercorrelated and produce significant 
effects on one another. This relationship between explanatory 
variables compromises the results of multivariable regression 
analyses. The intercorrelation between explanatory variables 
is termed as “multicollinearity.” In this review, the definition 
of multicollinearity, measures to detect it, and its effects on the 
results of multiple linear regression analyses will be discussed. 
In the appendix following the main text, the concepts of multi-
collinearity and measures for its detection are described with as 
much detail as possible along with mathematical equations to 
aid readers who are unfamiliar with statistical mathematics.

Statistical Round

Multicollinearity represents a high degree of linear intercorrelation between explanatory variables in a multiple regres-
sion model and leads to incorrect results of regression analyses. Diagnostic tools of multicollinearity include the variance 
inflation factor (VIF), condition index and condition number, and variance decomposition proportion (VDP). The mul-
ticollinearity can be expressed by the coefficient of determination (Rh

2) of a multiple regression model with one explana-
tory variable (Xh) as the model’s response variable and the others (Xi [i ≠ h]) as its explanatory variables. The variance (σh

2) 

of the regression coefficients constituting the final regression model are proportional to the VIF ( 1
1−Rh

2 ). Hence, an in-
crease in Rh

2 (strong multicollinearity) increases σh
2. The larger σh

2 produces unreliable probability values and confidence 
intervals of the regression coefficients. The square root of the ratio of the maximum eigenvalue to each eigenvalue from 
the correlation matrix of standardized explanatory variables is referred to as the condition index. The condition number 
is the maximum condition index. Multicollinearity is present when the VIF is higher than 5 to 10 or the condition indi-
ces are higher than 10 to 30. However, they cannot indicate multicollinear explanatory variables. VDPs obtained from the 
eigenvectors can identify the multicollinear variables by showing the extent of the inflation of σh

2  according to each con-
dition index. When two or more VDPs, which correspond to a common condition index higher than 10 to 30, are higher 
than 0.8 to 0.9, their associated explanatory variables are multicollinear. Excluding multicollinear explanatory variables 
leads to statistically stable multiple regression models.
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Multicollinearity

Exact collinearity is a perfect linear relationship between two 
explanatory variables X1 and X2. In other words, exact collin-
earity occurs if one variable determines the other variable (e.g., 
X1 = 100 − 2X2). If such relationship exists between more than 
two explanatory variables (e.g., X1 = 100 − 2X2 + 3X3), the rela-
tionship is defined as multicollinearity. Under multicollinearity, 
more than one explanatory variable is determined by the others. 
However, collinearity or multicollinearity do not need to be ex-
act to determine their presence. A strong relationship is enough 
to have significant collinearity or multicollinearity. A coefficient 
of determination is the proportion of the variance in a response 
variable predicted by the regression model built upon the ex-
planatory variable (s). However, the coefficient of determination 
(R2) from a multiple linear regression model whose response 
and explanatory variables are one explanatory variable and the 
rest, respectively, can also be used to measure the extent of mul-
ticollinearity between explanatory variables. R2 = 0 represents 
the absence of multicollinearity between explanatory variables, 
while R2 = 1 represents the presence of exact multicollinearity 
between them. The removal of one or more explanatory vari-
ables from variables with exact multicollinearity does not cause 
loss of information from a multiple linear regression model.

Variance Inflation Factor

The variance of regression coefficients is proportional to 

1
1 − R2

which is called the variance inflation factor. Considering the 
range of R2 (0 ≤ R2 ≤ 1), R2 = 0 (complete absence of multicol-
linearity) minimizes the variance of the regression coefficient 
of interest, while R2 = 1 (exact multicollinearity) makes this 
variance infinite (Fig. 1). The reciprocal of the variance inflation 
factor (1 − R2) is known as the tolerance. If the variance infla-
tion factor and tolerance are greater than 5 to 10 and lower than 
0.1 to 0.2, respectively (R2 = 0.8 to 0.9), multicollinearity exists. 
Although the variance inflation factor helps to determine the 
presence of multicollinearity, it cannot detect the explanatory 
variables causing the multicollinearity.

As previously mentioned, strong multicollinearity increas-
es the variance of a regression coefficient. The increase in the 
variance also increases the standard error of the regression 
coefficient (because the standard error is the square root of the 
variance). The increase in the standard error leads to a wide 95% 
confidence interval of the regression coefficient. The inflated 
variance also results in a reduction in the t-statistic to determine 

whether the regression coefficient is 0. With a low t-statistic 
value, the regression coefficient becomes insignificant. The wide 
confidence interval and insignificant regression coefficient make 
the final predictive regression model unreliable.

Condition Number and Condition Index

The eigenvalues (λ) obtained from the calculation using a 
matrix composed of standardized explanatory variables can be 
used to diagnose multicollinearity. The total number and sum of 
the eigenvalues are equal to the number of explanatory variables. 
The average of the eigenvalues is 1. Because the total sum of the 
eigenvalues is constant, the presence of their high maximum 
value indicates that the other eigenvalues are low relative to the 
maximum (λmax). Eigenvalues close to 0 indicate the presence 
of multicollinearity, in which explanatory variables are highly 
intercorrelated and even small changes in the data lead to large 
changes in regression coefficient estimates. The square root of 
the ratio between the maximum and each eigenvalue (λ1, λ2, … , 
λk) is referred to as the condition index:
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The largest condition index is called the condition number. A 
condition number between 10 and 30 indicates the presence of 
multicollinearity and when a value is larger than 30, the multi-
collinearity is regarded as strong.
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Fig. 1. The effects of the coefficient of determination (Rj
2) from a re-

gres sion model [Xij = γ0 + k
l 1=∑   γlXil + ϵi (i = 1, 2, … , n; l = 1, 2, … , k; l ≠ 

j)] on the variance of a regression coefficient of interest [Var(βj)]. The 
presence of multicollinearity (an increase in Rj

2) inflates Var(βj). Xij: jth 
explanatory variable of a regression model [Yi = β0 + β1Xi1 + β2Xi2 + , … , 
+ βkXik + εi (i = 1,2, … , n)].
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Variance Decomposition Proportion

Eigenvectors derived from eigenvalues are used to calculate 
the variance decomposition proportions, which represent the 
extent of variance inflation by multicollinearity and enable the 
determination of the variables involved in the multicollinearity. 
Each explanatory variable has variance decomposition propor-
tions corresponding to each condition index. The total sum of 
the variance decomposition proportions for one explanatory 
variable is 1. If two or more variance decomposition proportions 
corresponding to condition indices higher than 10 to 30 exceed 

80% to 90%, it is determined that multicollinearity is present be-
tween the explanatory variables corresponding to the exceeding 
variance decomposition proportions.

Strategies to Deal with Multicollinearity

Erroneous recording or coding of data may inadvertently 
cause multicollinearity. For example, the unintentional duplica-
tive inclusion of the same variable in a regression analysis yields 
a multicollinear regression model. Therefore, preventing human 
errors in data handling is very important. Theoretically, increas-

Table 1. Raw Data from Reference [4]

Serial 
number

PVV/GW 
(cm/s/100 g)

PSV/GW 
(cm/s/100 g)

EDV/GW 
(cm/s/100 g)

HVV/GW 
(cm/s/100 g) GW/SLV (%) GRWR (%) Regeneration 

rate (%)

1 16.36 8.9 3.47 6.02 57.42 1.11 158.76
2 26.68 21.22 3.53 12.07 61.38 1.36 197.19
3 12.49 16.62 2 8.88 67.42 1.47 144.73
4 8.45 22.86 6.71 7.46 69.94 1.31 140.06
5 10.19 14.23 4.75 2.06 65.68 1.25 129.71
6 19.53 17.35 1.95 7.54 59.63 1.14 162.59
7 20.65 10.48 2.21 4.88 59.42 1.07 178.48
8 22.96 14.23 4.25 3.69 75.08 1.73 120.9
9 21.22 21.64 4.1 11.94 43.42 0.87 191.24

10 8.11 3.16 0.78 8.82 75.12 1.47 150.03
11 24.74 7.84 1.68 3.68 57.65 1.08 173.44
12 11.38 15.71 3.56 7.2 39.93 0.74 211.98
13 15.82 15.04 2.4 9.89 51.27 1.02 193.49
14 8.36 9.01 2.01 3.4 50.52 0.94 164.04
15 12.04 9.72 2.27 6.03 51.6 1.05 156.97
16 10.97 4.58 1.73 5.55 56.63 1.03 208.36
17 7.97 9.33 0.57 4.17 79.09 1.61 154.62
18 7.46 6.11 1.73 2.99 57.2 1.07 137.38
19 29.09 15.71 3.41 9.35 56.44 1.1 180.15
20 10.3 8.54 2.32 10.78 60.43 1.17 228.47
21 7.82 4.41 1.07 4.19 59.52 1 153.62
22 14.71 6.29 1.77 6.16 65.05 1.3 121.31
23 8.54 6.73 1.27 5.52 65.65 1.17 157.37
24 23.05 11.34 5.39 3 33.57 0.63 211.27
25 13.12 5.86 1.89 10.92 52.93 0.9 178.16
26 7.41 9.11 2.05 5.5 53.72 0.91 174.89
27 14.59 5.59 1.26 3.75 58.62 1.14 142.98
28 8.52 6.52 1 6.92 56.61 1.11 165.59
29 18.97 6.35 2.94 5.61 56.41 1.07 141.54
30 35.41 36.36 14.23 15 41.52 0.89 238.22
31 4.55 1.27 3.13 2.83 70.91 1.27 138.42
32 22.59 28.7 10.51 10.35 32.74 0.66 247.45
33 9.21 4.55 1.19 7.92 72.2 1.34 140.27
34 18.32 11.61 2.91 8.07 52.23 1.02 216.06
35 5.69 6.88 1.18 2.78 72.12 1.39 144.18
36 11.21 11.92 3.31 10.29 60.65 1.69 156.22

PVV/GW: peak portal venous flow velocity per 100 g of the initial graft weight, PSV/GW: peak systolic velocity of the hepatic artery per 100 g of the 
initial graft weight, EDV/GW: end diastolic velocity of the hepatic artery per 100 g of the initial graft weight, HVV/GW: peak hepatic venous flow 
velocity per 100 g of the initial graft weight, GW/SLV: graft-to-standard liver volume ratio, GRWR: graft-to-recipient weight ratio.
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ing the sample size reduces the standard errors of regression co-
efficients and hence, decreases the degree of multicollinearity [2]. 
However, standard errors are not always reduced under strong 
multicollinearity. Old explanatory variables can be replaced with 
newly collected ones, which predict a response variable more 
accurately. However, the inclusion of new cases or explanatory 
variables to an already completed study requires significant ad-
ditional time and cost or is simply technically impossible.

Combining multicollinear variables into one can be another 
option. Variables that belong to a common category are usually 
multicollinear. Hence, combining each variable into a higher hi-
erarchical variable can reduce the multicollinearity. In addition, 
one of the variables in nearly exact collinearity can be presented 
by an equation with the other variable. The inclusion of the 
equation in the multiple regression model removes one of the 
collinear variables. Principal component analysis or factor anal-
ysis can also generate a single variable that combines multicol-
linear variables. However, with this procedure, it is not possible 
to assess the effect of individual multicollinear variables.

Finally, the multicollinear variables identified by the variance 
decomposition proportions can be discarded from the regres-
sion model, making it more statistically stable. However, the 
principled exclusion of multicollinear variables alone does not 
guarantee the remaining of the relevant variables, whose effects 
on the response variable should be investigated in the multi-
variable regression analysis. The exclusion of relevant variables 
produces biased regression coefficients, leading to issues more 
serious than multicollinearity. Ridge regression is an alternative 
modality to include all the multicollinear variables in a regres-
sion model [3].

Numerical Example

In this section, multicollinearity is assessed from variance 
inflation factors, condition numbers, condition indices, and 
variance decomposition proportions, using data (Table 1) 
from a previously published paper [4]. The response variable 
considered, is the liver regeneration rate two weeks after living 
donor liver transplantation (LDLT). Four of the six explanato-
ry variables considered, are hepatic hemodynamic parameters 
measured one day after LDLT, which include the peak portal 
venous flow velocity (PVV), the peak systolic velocity (PSV) 
and the end diastolic velocity (EDV) of the hepatic artery, and 
the peak hepatic venous flow velocity (HVV). These parameters 
are standardized by dividing them by 100 g of the initial graft 
weight (GW). The other explanatory variables considered are 
the graft-to-recipient weight ratio (GRWR) and the GW to stan-
dard liver volume ratio (GW/SLV).

Because the shear stress generated by the inflow from the 
portal vein and hepatic artery into a partial liver graft serves 
as a driving force for liver regeneration [5], it is assumed that 
the standardized PPV, PSV, and EDV (PVV/GW, PSV/GW, 
and EDV/GW, respectively) are positively correlated with the 
liver regeneration rate. A positive correlation between the stan-
dardized HVV (HVV/GW) and liver regeneration rate is also 
expected because the inflow constitutes the outflow through the 
hepatic vein from a liver graft. In addition, the smaller is a liver 
graft, the higher is the shear stress. Hence, the graft weight rela-
tive to the recipient weight and standard liver volume is expect-
ed to be negatively correlated with the liver regeneration rate. 
The expected univariate correlations between each explanatory 
variable and liver regeneration rate were found in the above-cit-
ed paper [4]. Significant correlations between the hepatic hemo-

Table 2. Correlation Matrix between Explanatory Variables

PVV/GW 
(cm/s/100 g)

PSV/GW 
(cm/s/100 g)

EDV/GW 
(cm/s/100 g)

HVV/GW 
(cm/s/100 g)

GW/SLV 
(%)

GRWR 
(%)

PVV/GW Pearson’s correlation coefficient 1 0.649† 0.591† 0.456† −0.459† −0.262
Two-tailed P value < 0.001 < 0.001 0.005 0.005 0.122

PSV/GW Pearson’s correlation coefficient 1 0.841† 0.610† −0.442† −0.217
Two-tailed P value < 0.001 < 0.001 0.007 0.203

EDV/GW Pearson’s correlation coefficient 1 0.450† −0.504† −0.330*
Two-tailed P value 0.006 0.002 0.049

HVV/GW Pearson’s correlation coefficient 1 −0.310 −0.109
Two-tailed P value 0.066 0.528

GW/SLV Pearson’s correlation coefficient 1 0.886†

Two-tailed P value < 0.001
GRWR Pearson’s correlation coefficient 1

Two-tailed P value

PVV/GW: peak portal venous flow velocity per 100 g of the initial graft weight, PSV/GW: peak systolic velocity of the hepatic artery per 100 g of the 
initial graft weight, EDV/GW: end diastolic velocity of the hepatic artery per 100 g of the initial graft weight, HVV/GW: peak hepatic venous flow 
velocity per 100 g of the initial graft weight, GW/SLV: graft-to-standard liver volume ratio, GRWR: graft-to-recipient weight ratio. *P < 0.05, †P < 0.01.
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dynamic parameters (PVV/GW, PSV/GW, EDV/GW, and HVV/
GW) and between the relative graft weights (GRWR and GW/
SLV) are anticipated because they share common characteristics. 
Therefore, the use of all of these explanatory variables for multi-
ple linear regression analysis might lead to multicollinearity.

As expected, the correlation matrix of the explanatory vari-
ables shows a significant correlation between the variables 
(Table 2). Based on the regression coefficients calculated from 
the multiple linear regression analysis using the six explanatory 
variables (Table 3A), we obtain the following regression model.
Liver regeneration rate

 = 232.797 + 0.221 × PPV ⁄ GW − 0.050 × PSV ⁄ GW + 0.690 × 
EDV ⁄ GW + 4.083 × HVV ⁄ GW − 0.905 × GW ⁄ SLV − 37.594 
× GRWR

(R2 = 0.682, P < 0.001)
While an increase in the PSV/GW leads to an increase in the 
liver regeneration rate, according to the results of the simple 

linear regression analysis [4] a unit increase in the PSV/GW 
reduces, albeit insignificantly, the regeneration rate by 0.05%. In 
addition, although the effect of a unit change in the GRWR on 
the regeneration rate is the strongest (37.954% decrease in the 
regeneration rate per unit increase), its regression coefficient 
is not statistically significant due to its inflated variance, which 
leads to a high standard error of 32.665 and a wide 95% con-
fidence interval between –104.4 and 29.213. These unreliable 
results are produced by multicollinearity presented by the high 
variance inflation factors of the regression coefficients for GW/
SLV, GRWR, and PSV/GW (more than or very close to 5), which 
are 7.384, 6.011, and 4.948, respectively. They are indicated with 
asterisks in Table 3A. The three condition indices of more than 
10 (daggers in Table 3B) also indicate that there are three linear 
dependencies that arise from multicollinearity. However, they 
cannot identify the explanatory variables with multicollinearity.

The variance decomposition proportions exceeding 0.8 are 

Table 3A. Regression Coefficients of Multiple Linear Regression Model for Six Explanatory Variables

Unstandardized 
coefficients

Standard 
error

Standardized 
coefficients t-statistic P

95% Confidence interval 
for the unstandardized 

coefficients
Collinearity statistics

Lower bound Upper bound Tolerance
Variance 
inflation 

factor

Intercept 232.797 29.542 7.880 < 0.001 172.376 293.217
PVV/GW 0.221 0.642 0.050 0.344 0.733 −1.093 1.534 0.525 1.905
PSV/GW −0.050* 1.026 −0.011 −0.048 0.962* −2.148 2.049 0.202 4.948*
EDV/GW 0.690 2.506 0.056 0.275 0.785 −4.435 5.816 0.261 3.834
HVV/GW 4.083 1.411 0.396 2.893 0.007 1.197 6.970 0.585 1.709
GW/SLV −0.905 0.845 −0.305 −1.071 0.293 −2.633 0.823 0.135 7.387*
GRWR −37.594* 32.665* −0.295 −1.151 0.259* −104.400* 29.213* 0.166 6.011*

*Refer to the main text for details. PVV/GW: peak portal venous flow velocity per 100 g of the initial graft weight, PSV/GW: peak systolic velocity of 
the hepatic artery per 100 g of the initial graft weight, EDV/GW: end diastolic velocity of the hepatic artery per 100 g of the initial graft weight, HVV/
GW: peak hepatic venous flow velocity per 100 g of the initial graft weight, GW/SLV: graft-to-standard liver volume ratio, GRWR: graft-to-recipient 
weight ratio.

Table 3B. Collinearity Diagnostics

Eigenvalue Condition Index
Variance decomposition proportions

Intercept PVV/GW PSV/GW EDV/GW HVV/GW GW/SLV GRWR

6.164 1.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.555 3.332 0.00 0.00 0.02 0.07 0.00 0.00 0.00
0.119 7.209 0.00 0.09 0.00 0.25 0.45 0.00 0.00
0.099 7.883 0.00 0.74 0.02 0.02 0.24 0.00 0.00
0.043 11.938† 0.01 0.01 0.87* 0.55 0.22 0.00 0.00
0.017 18.975† 0.47 0.09 0.08 0.11 0.04 0.00 0.15
0.003 47.323† 0.51 0.06 0.02 0.00 0.04 0.99* 0.84*

*Refer to the main text for details, †Refer to the main text for details. PVV/GW: peak portal venous flow velocity per 100 g of the initial graft weight, 
PSV/GW: peak systolic velocity of the hepatic artery per 100 g of the initial graft weight, EDV/GW: end diastolic velocity of the hepatic artery per 100 
g of the initial graft weight, HVV/GW: peak hepatic venous flow velocity per 100 g of the initial graft weight, GW/SLV: graft-to-standard liver volume 
ratio, GRWR: graft-to-recipient weight ratio.
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indicated with asterisks in Table 3B. Those corresponding to 
the highest condition index (condition number), i.e., 0.99 and 
0.84, indicate that the most dominant linear dependence of the 
regression model is explained by 99% and 84% of the variance 
inflation in the regression coefficients of GW/SLV and GRWR. 
The strong linear dependence between the two explanatory 
variables is also supported by the highest Pearson’s correlation 
coefficient (R = 0.886) between them (Table 2). However, the 
second strongest correlation between PSV/GW and EDV/GW 
(R = 0.841), which can be found in Table 2, does not seem to 
cause multicollinearity in the multiple linear regression model. 
Although the variance inflation factor of the PSV/GW (4.948) is 
lower than 5, it is very close to it. In addition, only one of their 
variance decomposition proportions corresponding to the con-
dition index of 11.938 is over 0.8. However, if the cut-off value 
of the variance decomposition proportion for the diagnosis of 
multicollinearity is set to 0.3 according to the work of Liao et al. 
[6], the two explanatory variables are multicollinear. Therefore, 
excluding the GW/SLV from the regression model is justified, 
but whether the PSV/GW is removed from the regression model 
is not clear.

The exclusion of GW/SLV and PSV/GW produced a stable 

regression model (Table 4A) which is
Liver regeneration rate 

= 209.393 + 0.392 × PVV ⁄ GW + 1.006 × EDV ⁄ GW + 4.410 
× HVV ⁄ GW − 68.832 × GRWR

(R2 = 0.669, P < 0.001)
All the variance inflation factors became less than 2. Particularly, 
the variance inflation factor of the regression coefficient for the 
GRWR was reduced from 6.011 to 1.137 with a decrease in its 
standard error from 32.665 to 14.014 and narrowing of its 95% 
confidence interval from (−104.4, 29.213) to (−97.413, −40.251). 
In accordance with the above changes, the probability value for 
the regression coefficient became less than 0.05 (from 0.259 to < 
0.001). Although there is still a condition number of more than 
10, only one variance decomposition proportion of more than 
0.9 is present (Table 4B). It needs to be noted that the intercept 
term is not important for this analysis. The small change in the 
coefficient of determination (R2) from 0.682 to 0.669 indicates a 
negligible loss of information.

Conclusions

Multicollinearity distorts the results obtained from multiple 

Table 4A. Regression Coefficients of Multiple Linear Regression Model for Four Explanatory Variables Following the Exclusion of Two Variables

Unstandardized 
coefficients

Standard 
error

Standar dized 
coefficients t-statistic P

95% Confidence interval 
for the unstandardized 

coefficients
Collinearity statistics

Lower bound Upper bound Tolerance
Variance 
inflation 

factor

Intercept 209.393 19.653   10.655 < 0.001 169.311 249.476
PVV/GW 0.392 0.593 0.088 0.661 0.514 −0.817 1.601 0.599 1.670
EDV/GW 1.006 1.664 0.082 0.605 0.550 −2.388 4.401 0.575 1.738
HVV/GW 4.410 1.239 0.428 3.559 0.001 1.882 6.937 0.738 1.355
GRWR −68.832 14.014* −0.541 −4.912 < 0.001* −97.413* −40.251* 0.879 1.137*

*Refer to the main text for details. PVV/GW: peak portal venous flow velocity per 100 g of the initial graft weight, EDV/GW: end diastolic velocity of 
the hepatic artery per 100 g of the initial graft weight, HVV/GW: peak hepatic venous flow velocity per 100 g of the initial graft weight, GRWR: graft-
to-recipient weight ratio.

Table 4B. Collinearity Diagnostics

Eigenvalue Condition Index
Variance decomposition proportions

Intercept PVV/GW EDV/GW HVV/GW GRWR

4.409   1.000 0.00 0.01 0.01 0.01 0.00
0.369   3.456 0.01 0.01 0.39 0.00 0.03
0.107   6.410 0.02 0.07 0.38 0.69 0.05
0.096   6.766 0.00 0.85 0.18 0.30 0.00
0.018 15.697† 0.97 0.06 0.03 0.01 0.91*

*Refer to the main text for details, †Refer to the main text for details. PVV/GW: peak portal venous flow velocity per 100 g of the initial graft weight, 
EDV/GW: end diastolic velocity of the hepatic artery per 100 g of the initial graft weight, HVV/GW: peak hepatic venous flow velocity per 100 g of 
the initial graft weight, GRWR: graft-to-recipient weight ratio.
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linear regression analysis. The inflation of the variances of the 
regression coefficients due to multicollinearity makes the coeffi-
cients statistically insignificant and widens their confidence in-
tervals. Multicollinearity is determined to be present if the vari-
ance inflation factor and condition number are more than 5 to 
10 and 10 to 30, respectively. However, they cannot detect which 
explanatory variables are multicollinear. To identify the variables 
with multicollinearity, the variance decomposition proportion is 
used. If the variance decomposition proportions of more than 0.8 
to 0.9 correspond to the condition indices of more than 10 to 30, 
the explanatory variables, which are associated with the variance 

decomposition proportions corresponding to common condi-
tion indices, are multicollinear. In conclusion, the diagnosis of 
multicollinearity and exclusion of multicollinear explanatory 
variables enable the formulation of a reliable multiple linear re-
gression model. 
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Appendix

This appendix shows the mathematical description of the definition of multicollinearity and its diagnostics, which was not present-
ed in the main text. 

Multicollinearity

If two explanatory variables X1 and X2 have a linear relationship, as follows,

c1X1 + c2X2 = c0

⇔X1 = c0 − c2

c1
X2

⇔X2 = c0 − c1

c2
X1,

where c0, c1, and c2 are arbitrary constants, the relationship is called exact collinearity. If the relationship between more than two ex-
planatory variables (X1, X2, … , Xk, k > 2, k is a natural number) is or approximates

c1X1 + c2X2 + … + ckXk = c0,

where ck (k > 2, k is a natural number) is an arbitrary constant, multicollinearity occurs. Under multicollinearity, more than one ex-
planatory variable Xh is determined by the other explanatory variables as follows:
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Variance Inflation Factor

A multiple linear regression model with n sample observations of k explanatory variables (X1, X2, … , Xk) and a response variable (Y) 
is given by

Yi = β0 + β1Xi1 + β2Xi2 + , … , + βkXik + εi (i = 1,2, … , n)   εi ~ N(0, σ2),

where βj(j = 0,1,2, … , k) and εi are the regression coefficients and error, respectively. Each error (ε1, ε2, … , εn) is stochastically inde-
pendent and is normally distributed with a mean of 0 and a variance of σ2. The variance of βj [Var(βj)] is
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where ∑ −++−+−=−
=

n
i jnjjjjjjij XXXXXXXX1

22
2

2
1

2 )()()()( L   is the sum of squares of the difference between each value of Xij 
and the mean of Xij (Xj) and Rj

2 is the coefficient of determination from the regression model [Xij = γ0 + k
l 1=∑   γlXil + ϵi (i = 1, 2, … , n;  l = 

1,2, … , k; l ≠ j)] with the response variable of Xij, the explanatory variables of Xil, the regression coefficients of γ0 and γl, and the error 

of ϵ i. Assuming that 2
1 )( jij

n
i XX −∑
=

  and σ2 are constant, Var(βj) is solely dependent on 1
1 − Rj

2 and an increase in Rj
2 leads to an increase 

in Var(βj) and vice versa. Because 0 ≤ Rj
2 ≤ 1, Rj

2 = 0 minimizes Var(βj) while Rj
2  ≈ 1 makes Var(βj) infinite (Fig. 1). This means that the 

complete absence of multicollinearity (Rj
2 = 0) between explanatory variables minimizes the variance of the regression coefficient for 

an explanatory variable of interest, whereas exact multicollinearity (Rj
2 = 1) between them inflates the variance infinitely. Because of its 

significant effects on the variance of a regression coefficient, the term
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1
1 − Rj

2

is called the variance inflation factor; its reciprocal is known as the tolerance.

The variance inflated by strong multicollinearity increases the standard error of the regression coefficient ( ))( jβVar   and widens 

the 95% confidence interval of a regression coefficient (βj), which is

βj ± t(n − k − 1; 0.025) ( ))( jβVar  ,

where t(n − k − 1; 0.025) is the critical t-statistic at 2.5% (= 100 − 95
2 %) level under the degree of freedom n − k − 1. The increase in the variance 

also results in a reduction in t-statistic

)(
0

j

j

βVar
β

T
−

=  

for the hypothesis test (H0: βj = 0 versus H1: βj ≠ 0), which produces an insignificant result.

Condition Number and Condition Index

Each explanatory variable (Xij) from a multiple linear regression Yi = β0 + β1Xi1 + β2Xi2 + , … , + βkXik + εi (i = 1,2, … , n) can be stan-
dardized by dividing the difference between each of its values (Xij) and their mean (Xj) by the square root of the sum of squares of all 
the differences:
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Then, we obtain an n × k matrix (Z) of the standardized explanatory variables:

⎟

⎟

⎟

⎠

⎞

⎜

⎜

⎜

⎝

⎛

=

nknn

k

k

ZZZ

ZZZ
ZZZ

Z
L

MOMM

L

L

21

22221

11211

 

By transposing Z, so that the rows become columns and vice versa, we obtain the k × n transposed matrix (ZT):
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The multiplication of ZT by Z produces a k × k square matrix. As shown below, the multiplications of each element from the ath row of 
ZT and the bth  column of Z yield the element from the bth  column of the ath row in ZT × Z:
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Each element of the square matrix is equivalent to a correlation coefficient (r) of two explanatory variables (Xih and Xij).
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Therefore, the matrix ZTZ can be expressed as follows:
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To calculate the eigenvalues of a square matrix, its determinant needs to be known. The determinant of a 2 × 2 matrix is
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The determinant of a 3 × 3 matrix is
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Using the above equations for the determinant of a square matrix, the eigenvalues (λ1, λ2) of the 2 × 2 correlation matrix can be ob-
tained:
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If generalized, the eigenvalues (λ1, λ2, … , λk) of the correlation matrix can be calculated.
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(λ − λ1)(λ − λ2)…(λ − λk) = 0

By solving the kth degree polynomial equation of the variable λ, we can obtain k eigenvalues (λ1, λ2, … , λk). The number of eigenvalues 
(λ1, λ2, …, λk) from the k × k matrix is k and their mean and total sum are 1 and k, respectively.

The square root of the ratio between the maximum and each eigenvalue (λ1, λ2 , … , λk) is termed “condition index” and is expressed as
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s
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s ==  

The largest condition index is called the “condition number.”

Variance Decomposition Proportion

Eigenvectors are calculated from their corresponding eigenvalues. The relationship between two eigenvalues (λ1, λ2) and their ei-
genvectors (υ1, υ2) is as follows:
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By solving the above equation, the ratio (Rs) between the two elements (υ1s = Rs × υ2s) is obtained. As long as the ratio is maintained, the 
values of the two elements can be chosen arbitrarily. Then, two eigenvectors can be obtained.
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we have k eigenvectors (υ1, υ2, … , υk) consisting of k elements in one column, which correspond to k eigenvalues (λ1, λ2, … , λk).
The eigenvector corresponding to the eigenvalue λs (s = 1, 2, … , k) are expressed as
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There are k variance decomposition proportions for the regression coefficient βj (j = 1, 2, … , k), which are defined as
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The total sum of the variance decomposition proportions for βj (πj1 + πj2 + … + πjk = k
s 1=∑   πjs) is 1. 


