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Materials and Methods 

Epidemic Transmission Models 

SEIR Model 

 We implemented a standard deterministic SEIR model with compartments for susceptible 

(S), exposed-not-infectious (E), infectious (I) and recovered (R). This is the model we use to 5 

generate Fig. 1, to estimate incidence based on Ct distributions as shown in Fig. 2C, for the model 

fits shown in Fig. 3 and the single-cross section results in Fig 4. Note that this model does not 

account for PCR detectability, as the time course of viral loads is modelled separately. The 

compartmental transition equations are given by: 

𝑑𝑆

𝑑𝑡
=  
−𝛽𝑆𝐼

𝑁
, 10 

𝑑𝐸

𝑑𝑡
=  
𝛽𝑆𝐼

𝑁
−  𝜎𝐸, 

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 −  𝛾𝐼, and 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼, 

where 𝛽 =
𝑅0

𝛾
, and 𝛽 = 0  for 𝑡 < 𝑡0 . For the Ct model fitting, the daily probability of infection, 

𝜋𝑡, is given by the daily per-capita increase in the cumulative exposed compartment, 
𝑑𝐸′

𝑑𝑡
= 

𝛽𝑆𝐼

𝑁
. 15 

For the long-term care facility estimates and corresponding simulations, we assumed that the initial 

prevalence of infected individuals at the time of seeding was 0.2%. For the Brigham & Women’s 

hospital estimates and corresponding simulations, we assumed an initial seed prevalence of 

0.001%. 

 To represent the implementation and relaxation of non-pharmaceutical interventions which 20 

decrease transmission rates, we modified the model to assume that the underlying transmission 

probability parameter, 𝛽, was a function of time, 𝑡. This was the model used for the simulations 

shown in Fig. S4, Fig. S18, and Movies S1 to S3. For the purposes of simulation, we solved this 

modified model in a stochastic framework (rather than deterministic as above) using the odin R 

package (60). Here, we assumed that the transmission rate changed over time as follows: 25 

𝛽𝑡 = {

𝑅0𝛾 𝑡 < 80

𝑅0
2𝛾 80 ≤ 𝑡 < 150

𝑅0
3𝛾 𝑡 > 150

 

where 𝑅0 = 2.5, 𝑅0
2 = 0.7 and 𝑅0

3 = 1.5. For this simulation, we assumed that the initial 

prevalence of infected individuals at time of seeding was 0.001%. To smooth the transitions 

between these different transmission rates, we fitted a cubic smoothing spline to 𝛽𝑡 using the 
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‘smooth.spline’ function in R version 4.0.2 with a smoothing parameter of 0.5 before solving the 

ODEs.  

Exponential Growth Model 

Under the exponential growth model, new infections were assumed to arise with daily 

probability given by 𝜋𝑡 = 𝜋0𝑒
𝑟𝑡, where 𝑡 is in unit days. When fitting the model, we 5 

parameterized 𝜋0 to find the overall probability of infection with the focal period as 𝜋0 =
𝑐

∑ 𝑒𝑟𝑡
𝑡𝑚𝑎𝑥
0

 where 𝑐 is the overall probability of infection between 𝑡 = 0 and 𝑡 = 𝑡𝑚𝑎𝑥.  

 

SEEIRR Model 

To describe the prevalence of individuals who are PCR positive for SARS-CoV-2, we 10 

developed a deterministic SEEIRR transmission model with states for susceptible (S), exposed-

not-infectious-undetectable (E1), exposed-not-infectious-detectable (E2), infected-infectious-

detectable (I), recovered-not-infectious-detectable (R1) and recovered-not-infectious-undetectable 

(R2), as depicted in Fig. S1A. These additional exposed and recovered compartments account for 

the periods when an individual will test PCR positive, but is not yet or is no longer infectious. We 15 

fit this model to data from the four Massachusetts long-term care facilities using Markov chain 

Monte Carlo (MCMC) to generate the trajectories in Fig. 2A, placing informative priors on the 

shared transition rate parameters (Table S1) and uniform priors on the facility-specific basic 

reproductive numbers, R0, and the effective seed times, t0. The compartmental transition equations 

are given by: 20 

𝑑𝑆

𝑑𝑡
=  
−𝛽𝑙𝑆𝐼

𝑁
, 

𝑑𝐸1
𝑑𝑡

=  
𝛽𝑙𝑆𝐼

𝑁
− 𝜎′𝐸, 

𝑑𝐸2
𝑑𝑡

=  𝜎′𝐸1 +  𝛼𝐸2, 

𝑑𝐼

𝑑𝑡
= 𝛼𝐸2  − 𝛾

′𝐼, 

𝑑𝑅1
𝑑𝑡

= 𝛾′𝐼 − 𝜔𝑅1, and 25 

𝑑𝑅2
𝑑𝑡

= 𝜔𝑅1, 

where 𝛽𝑙 is the location specific transmission rate and 𝛽𝑙 = 0 for 𝑡 < 𝑡0,𝑙 , the location specific 

seed time. The initial prevalence of infected individuals at the time of seeding was assumed to be 

0.2%. 

  30 
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Gaussian Process Model 

 For a highly general version of our method, we developed a flexible model for the daily 

probability of infection, denoted 𝜋𝑡, for any day 𝑡 where infection on that day could result in a 

positive PCR test on the (or one of the) testing day(s). Specifically, we use a Gaussian process 

prior for a vector of values 𝑘𝑡 for each day 𝑡; the incidence rate for day 𝑡 is then given by 𝜋𝑡 =5 

(1 + 𝑒−𝑘𝑡)−1. The covariance matrix for the GP prior 𝑘~𝑀𝑉𝑁((0,… , 0), 𝑲) is given by 𝑲𝑖𝑗 =

𝜂2 exp(−𝜌2𝐷𝑖𝑗
2 ), where 𝐷𝑖𝑗 is the difference between 𝑖 and 𝑗 and 𝜈 and 𝜌 are hyperparameters 

fixed to values of 1.5 and 0.03, respectively (see Table S1). The parameter 𝜌 determines the rate 

of decline of the covariance as the time between days increases, so a higher value of 𝜌 indicates 

less correlation. See McElreath for more details (61).  10 

 This method is more flexible than one based on the SEIR model, allowing the daily 

incidence rate to reflect changes in transmission rates and contact patterns (although these are not 

separately identified by the model), as well as the depletion of the pool of susceptible individuals. 

Thus, it does not require the strict parametric assumptions of the SEIR model. We use it to model 

the course of the outbreak in Massachusetts, as various policies and behavior changes affect the 15 

trajectory over time. 

 

 

Ct Value Model 

 20 

The modal Ct value at day a follows a two-hinge function that is at the true undetectable 

value of 𝐶𝑧𝑒𝑟𝑜 for 𝑎 ≤  𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒, decreases linearly (log viral load increases) to a minimum Ct of 

𝐶𝑝𝑒𝑎𝑘 at 𝑎 = 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 + 𝑡𝑝𝑒𝑎𝑘, increases linearly (log viral load wanes) to a Ct value of 𝐶𝑠𝑤𝑖𝑡𝑐ℎ at 

𝑎 = 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 + 𝑡𝑝𝑒𝑎𝑘 + 𝑡𝑠𝑤𝑖𝑡𝑐ℎ, and then increases (log viral load wanes) at a slower linear rate 

until it reaches the limit of detection (LOD), 𝐶𝐿𝑂𝐷, at 𝑎 = 𝑡𝐿𝑂𝐷. That is, the modal Ct value is given 25 

by: 

𝐶𝑚𝑜𝑑𝑒(𝑎) =  

{
 
 
 

 
 
 

𝐶𝑧𝑒𝑟𝑜, 𝑎 ≤ 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒

𝐶𝑧𝑒𝑟𝑜 +
𝐶𝑝𝑒𝑎𝑘 − 𝐶𝑧𝑒𝑟𝑜

𝑡𝑝𝑒𝑎𝑘
(𝑎 − 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒), 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 < 𝑎 ≤ 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 + 𝑡𝑝𝑒𝑎𝑘

𝐶𝑝𝑒𝑎𝑘 + 
𝐶𝑠𝑤𝑖𝑡𝑐ℎ − 𝐶𝑝𝑒𝑎𝑘

𝑡𝑠𝑤𝑖𝑡𝑐ℎ
(𝑎 − 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 − 𝑡𝑝𝑒𝑎𝑘),

𝐶𝑠𝑤𝑖𝑡𝑐ℎ + 
𝐶𝐿𝑂𝐷 − 𝐶𝑠𝑤𝑖𝑡𝑐ℎ

𝑡𝐿𝑂𝐷 − 𝑡𝑠𝑤𝑖𝑡𝑐ℎ − 𝑡𝑝𝑒𝑎𝑘 − 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒
(𝑎 − 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 − 𝑡𝑝𝑒𝑎𝑘 − 𝑡𝑠𝑤𝑖𝑡𝑐ℎ),

𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 + 𝑡𝑝𝑒𝑎𝑘 < 𝑎 ≤ 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 + 𝑡𝑝𝑒𝑎𝑘 + 𝑡𝑠𝑤𝑖𝑡𝑐ℎ
𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 + 𝑡𝑝𝑒𝑎𝑘 + 𝑡𝑠𝑤𝑖𝑡𝑐ℎ < 𝑎

 

 

The Ct value of a randomly-chosen individual 𝑎 days after infection, 𝐶(𝑎), is then distributed 

according to: 𝐶(𝑎)~𝐺𝑢𝑚𝑏𝑒𝑙(𝐶𝑚𝑜𝑑𝑒(𝑎), 𝜎(𝑎)), where 𝜎(𝑎) is given by: 30 

𝜎(𝑎) =  

{
 

 
𝜎𝑜𝑏𝑠, 𝑎 < 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 + 𝑡𝑝𝑒𝑎𝑘 + 𝑡𝑠𝑤𝑖𝑡𝑐ℎ

𝜎𝑜𝑏𝑠 [1 −
1 − 𝑠𝑚𝑜𝑑
𝑡𝑚𝑜𝑑

(𝑎 − 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 − 𝑡𝑝𝑒𝑎𝑘 − 𝑡𝑠𝑤𝑖𝑡𝑐ℎ)] , 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 + 𝑡𝑝𝑒𝑎𝑘 + 𝑡𝑠𝑤𝑖𝑡𝑐ℎ ≤ 𝑎 < 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 + 𝑡𝑝𝑒𝑎𝑘 + 𝑡𝑠𝑤𝑖𝑡𝑐ℎ + 𝑡𝑚𝑜𝑑

𝜎𝑜𝑏𝑠𝑠𝑚𝑜𝑑, 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 + 𝑡𝑝𝑒𝑎𝑘 + 𝑡𝑠𝑤𝑖𝑡𝑐ℎ + 𝑡𝑚𝑜𝑑 ≤ 𝑎
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Note that for the Gumbel distribution, the mean and variance are given by 𝐶𝑚𝑜𝑑𝑒(𝑎) − 𝜎(𝑎)𝛾 and 

𝜎(𝑎)2𝜋2

6
, respectively, where 𝛾 is Euler’s constant.  

This observation model allows for Ct values to gradually shrink towards the mode as the 

infection is cleared and most individuals become undetectable again. The log-viral load (in log10 

RNA copies per mL) a days after infection, 𝑉(𝑎), can then be calculated by: 𝑉(𝑎) = 𝑉𝐿𝑂𝐷 +5 

𝐶𝐿𝑂𝐷−𝐶(𝑎)

log2(10)
, where the limit of detection on the Ct scale is CLOD = 40 and on the viral load scale 

depends on test characteristics (we assume VLOD = 3 log10 RNA copies per mL). This model 

captures the shape of the observed modal viral load over time and the features described above.  

A feature of viral loads not captured by the above model is that a small fraction of 

individuals remain PCR positive at very high Ct values for many weeks after recovery, whereas 10 

most drop to undetectable levels within a couple of weeks. To account for this, each day after 

𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 + 𝑡𝑝𝑒𝑎𝑘 + 𝑡𝑠𝑤𝑖𝑡𝑐ℎ there is a daily probability, 𝑝𝑎𝑑𝑑𝑙, of an individual fully clearing the virus 

and becoming undetectable, in addition to the viral load trajectory where the modal Ct value rises 

above the limit of detection. The probability of being detectable on day 𝑎 ≤ 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 + 𝑡𝑝𝑒𝑎𝑘 +

𝑡𝑠𝑤𝑖𝑡𝑐ℎ is 𝜙𝑎 = 𝑃[𝐶(𝑎) < 𝐶𝐿𝑂𝐷] and the probability of being detectable on day 𝑎 > 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 +15 

𝑡𝑝𝑒𝑎𝑘 + 𝑡𝑠𝑤𝑖𝑡𝑐ℎ is 𝜙𝑎 = 𝑃[𝐶(𝑎) < 𝐶𝐿𝑂𝐷](1 − 𝑝𝑎𝑑𝑑𝑙)
𝑎−𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒−𝑡𝑝𝑒𝑎𝑘−𝑡𝑠𝑤𝑖𝑡𝑐ℎ. 
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Fig. S1. Schematic of the SEEIRR transmission model, viral kinetics model and periods of 

viral kinetics used to parameterize the model. (A) Transmission model with the following 

compartments: susceptible (S), exposed, not infectious, undetectable (E1), exposed, not infectious, 

detectable (E2), infectious and detectable (I), recovered still detectable (R1), and recovered 5 

undetectable (R2). Transition rates were as follows: 𝛽, the transmission rate, 𝜎, onset of 

detectability rate, 𝛼, the onset of infectiousness rate, 𝛾, the rate of infectiousness loss, and 𝜔, the 

rate of loss of detectability after recovery. The red dashed arrow denotes the force of infection 

exerted on susceptible individuals. Note that the simpler SEIR model effectively combined the E1 
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and E2 compartments and the R1 and R2 compartments. (B) Schematic of the assumed viral kinetics 

model with key event times labeled. (C) Possible time between events for which data might be 

available. 

 

Selecting Viral Kinetics and Compartmental Model Parameters 5 

Comprehensive datasets to inform the entire viral load trajectory were lacking at the time 

of writing, and we therefore parameterized the model based on several key features of viral load 

kinetics that have been determined for SARS-CoV-2 infection. Viral loads and the timing of key 

events are reported with different reference points (for example, relative to the timing of symptom 

onset or relative to timing of exposure). However, most existing viral load time series begin after 10 

symptom onset (and are therefore from symptomatic individuals), and it is therefore difficult to 

corroborate assumptions for the pre-symptomatic period and asymptomatic viral trajectory. Fig. 

S1 depicts where in the disease course these events and parameters may be reported, which we use 

as a basis to choose parameter values and priors for our model. 

a) Time from infection to first detectable viral load 15 

Human infection times are never observed directly, which makes inference of viral kinetics 

immediately following infection challenging. Data from rhesus macaque challenge and hamster 

transmission models suggest that viral loads are detectable on the day of infection (62–64). In a 

cat transmission model, some secondary infected cats had detectable viral loads in oropharyngeal 

secretions on day two post infection (65). These studies suggest a very short or non-existent 20 

undetectable phase, however, animal models are likely inoculated with much higher viral loads 

than natural human infection, which may accelerate the time to detection.  

We parameterized our viral kinetics model such that 50% of individuals had measured Ct 

values below the limit of detection at around day two post infection. We assumed that Ct values at 

the time of infection were distributed around a modal Ct value of 40 and declined thereafter, which 25 

resulted in some individuals having detectable viral loads up to five days prior to the time of typical 

symptom onset, which fits with studies where Ct values have been detected as early as six days 

pre symptom onset (66). For the SEEIRR compartmental model described above, we assumed a 

mean duration of pre-detectability (1/σ) of two days. 

b) Time from infection to peak viral load 30 

Challenge studies in rhesus macaques indicate that viral load peaks around two days after 

infection (62, 65). This is not compatible with observations from human data, which suggest that 

viral loads peak around the time of symptom onset, which typically occurs around five days post 

infection (see below). Therefore, we assumed that the Ct value reaches a minimum (log viral load 

peaks) on average five days post infection. 35 
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c) Incubation period for symptom onset 

The time from infection to onset of symptoms has a median incubation period of 5-6 days 

with 99% of onsets occurring within 14 days (67). Although we do not explicitly model 

symptomatic vs. asymptomatic individuals, this parameter is useful for quantifying other key 

events where data are usually reported with respect to symptom onset rather than infection. 5 

Furthermore, a model comparison analysis by Ferretti et al. found that infectiousness may be tied 

to the timing of symptom onset rather than time since infection (for individuals who develop 

symptoms), which supports the parameterization of the viral kinetics curve with respect to time of 

symptom onset (67, 68). 

d) Duration of growth phase and onset of infectiousness 10 

We assumed that mean Ct decreased monotonically from the time of infection until a 

minimum at day five post infection, ignoring any eclipse phase (𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 = 0) before the onset of 

viral growth. We note that the model may be parameterized such that 𝑡𝑒𝑐𝑙𝑖𝑝𝑠𝑒 > 0, but we 

simplified this part of the kinetics curve due to limited data and to minimize model complexity. 

For the SEEIRR model described above, we assumed that individuals took two days on average to 15 

transition from the pre-infectious (E2) to the infectious (I) compartment (1/ɑ). This was chosen 

such that infected individuals were pre-infectious for four days on average (1/σ + 1/ɑ), earlier than 

the time of symptom onset, capturing the observation that a substantial proportion of transmission 

occurs pre-symptomatically (15, 66, 69). For the simpler SEIR model described above, we 

assumed that individuals were pre-infectious (E) for a mean of four days. 20 

e) Time from peak viral load to symptom onset 

Modelling analyses by He et al. and Ferretti et al. place the most likely time of transmission 

at around the time of symptom onset, suggesting that infectious viral load and symptom onset may 

coincide (67, 69). Because most viral load data are reported after symptom onset, there is limited 

pre-symptomatic data to assess if viral titers peak before onset (70). However, viral loads and PCR 25 

sensitivity appear to decrease monotonically from the time of symptom onset, suggesting that viral 

loads are highest just after or before the time of symptom onset (51, 71). We therefore 

parameterized our model to place peak viral load at day five post infection, coinciding with the 

median symptomatic incubation period. 

f) Time from peak viral load to loss of infectiousness 30 

The vast majority of studies report viral loads, culture-viable virus and model-inferred 

infectiousness with respect to symptom onset, which may occur after peak viral loads. We 

therefore quantify the timing of infectiousness with respect to symptom onset, described below. 
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g) Time from peak viral load to loss of detectable viral load 

As in f), we quantify waning rates with respect to symptom onset as described below due 

to the lack of viral load data reported with respect to peak viral load. 

h) Time from symptom onset to loss of infectiousness 

The relationship between viral load and infectiousness are currently unknown for SARS-5 

CoV-2. However, there are currently two main proxies used to estimate time-varying 

infectiousness: model-based results using generation intervals of known infector-infectee pairs 

(67, 69), and the ability to culture live virus from swab samples taken each day post symptom 

onset (67, 72). Model-based analyses have estimated substantial pre-symptomatic transmission 

probability, suggesting that individuals are infectious before symptom onset (67, 69). For virus 10 

culture data, a systematic review found that viable virus is unlikely to be cultured from samples 

taken more than nine days post symptom onset and another study found that higher viral loads are 

correlated with probability of live virus culture, though we note that lack of viral culture has not 

been shown to indicate lack of infectiousness (15, 70, 73–75). 

For the SEIR transmission model, a rapid scoping review suggested using a median six-15 

day infectious period for asymptomatic infections and median 9.5 days for symptomatic infections 

(15, 69).  However, because much of the data we analyze here were collected from populations 

under transmission-reducing interventions where the infectious period would likely be shorter, we 

assumed that the observed mean (1/𝛾) infectious period was four days in both the SEIR and 

SEEIRR models. We note that we do not fix this parameter but estimate it alongside other 20 

parameters using a strong prior, and therefore do not exclude the possibility of longer or shorter 

infectious periods. 

i) Time from symptom onset to loss of detectable viral load 

Waning of viral loads occurs following the onset of symptoms, with the median time from 

onset to loss of detectability in upper respiratory tract samples of approximately two weeks, though 25 

some studies suggest a more prolonged waning rate and greater persistence in lower respiratory 

tract and sputum samples (15, 44, 53, 71, 76). One patient has been reported detectable at day 83 

post symptom onset, indicating that some individuals remain PCR positive long after symptom 

onset (77). We therefore parameterized our model to capture both a median time from symptom 

onset to detectability loss of around two weeks and the possibility for some individuals remaining 30 

detectable for much longer. In the SEEIRR model, we used a point estimate for 1/𝜔 (recovery 

period) of 11 days, corresponding to an average loss of detectability at 19 days post infection (14 

days post typical symptom onset). 

 

  35 
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Informing the Viral Kinetics Model 

The literature summarized in Supplementary Material: Selecting Viral Kinetics 

Parameters informed parameters for the pre-viral peak phase and provided a basis with which to 

fully parameterize the model. To more formally parameterize the viral kinetics model, we used a 

least-squares optimization framework to obtain parameter point estimates that gave rise to viral 5 

kinetics with the following constraints: the proportion of individuals that are detectable on each 

day post symptom onset declines in line with existing data (71); the lower 99th percentile of 

possible Ct values at peak viral load is in line with either the lowest observed Ct value in our 

Brigham & Women’s Hospital dataset or from the long-term care facilities data; and the lowest 

99th percentile of Ct values 30 days post infection is in line with either a Ct value of 32 in the 10 

BWH analyses or 30 in the long-term care facilities analyses. From the calibration steps we 

obtained estimates for mean peak viral load that were broadly in line with the range reported in 

other studies (up to 109 viral RNA copies per ml) (52, 78). We used these point estimates to derive 

informative priors on key model parameters, as described in Table S1. The resulting distribution 

of Ct values and detectable proportions at each day 𝑎 after infection are shown in Fig. S2. These 15 

parameters are used as fixed values in Fig. 1.  

We note that for the pre-peak phase, solving the model from an initial Ct value at the 

LOD on day 0 allows for a proportion of individuals to have detectable viral loads up to five 

days prior to peak viral load (the typical time of symptom onset), which captures individuals who 

may have longer incubation periods and therefore detectable viral loads for many days before 20 

onset. 
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Fig. S2. Fitted viral kinetics model for cycle threshold (Ct) values, assumed loss of 

detectability over time, and assumed priors on model parameters for analyses of data from 

Brigham & Women’s Hospital, Massachusetts. These assumptions underpin the analyses 

presented here, but we note that more up to date estimates or alternative data, which may 5 

demonstrate different kinetics, can be used where appropriate to improve the accuracy of estimated 

epidemic trajectories (79).  (A) Solid green line shows the modal viral load trajectory over time 

since infection. Faint grey lines show trajectories from prior draws, and faint grey ribbon shows 

95% quantiles. Violin plots show the distribution of detectable Ct values for each five-day 

increment post infection using the maximum a priori trajectory (green line). Violins are colored 10 

by the proportion of Ct values above the limit of detection. (B) Least-squares based fit (colored 

line) to the proportion of individuals detectable in upper respiratory tract samples on each day post 

symptom onset (assuming an incubation period of five days) from Borremans et al. (71). Black 

dots and lines show proportion positive and 95% confidence intervals. Faint grey lines show 

proportion detectable over time from prior draws, and faint grey ribbon shows 95% quantiles. (C) 15 

Assumed prior densities for unknown model parameters. Model parameters and priors, as well as 

those used for the analyses of data from long-term care facilities, are shown in Table S1. 
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Parametric Models for Fitting Cross-Sectional Viral Load Data 

Exponential Growth Model 

 Assume that over the 𝐴𝑚𝑎𝑥 days prior to testing day t, the daily incidence grows (or 

declines) exponentially at rate 𝑟 so that 𝜋𝑡−𝑎 = 𝜋0 exp[𝑟(𝑡 − 𝑎)]. The exponential growth rate 𝛽 

is thus the logarithm of the daily growth rate in incidence over the days 𝑡 − 𝐴𝑚𝑎𝑥 to 𝑡 − 1. Larger 5 

values of 𝛽 indicate faster growth of new infections and a value of 0 indicates no increase or 

decrease in the number of new infections each day. For positive values of 𝑟, the doubling time (in 

days) for new infections is given by 
log2

𝑟
. This model may be a reasonable approximation in the 

early stages of an outbreak, when the number of susceptible individuals is large compared to the 

number of infections (20). However, constant exponential growth is a poor assumption for an 10 

epidemic process over longer periods of time. We therefore set 𝐴𝑚𝑎𝑥, and equivalently 𝑡𝑚𝑎𝑥 under 

the nomenclature in the section Epidemic Transmission Models, to be 35 days, chosen to 

compromise between the duration that most individuals remain PCR positive post infection 

without assuming constant exponential growth for too long a period. 

Fitting this likelihood, and ignoring the nuisance parameter 𝜋0, gives: 15 

ℒ(𝑋1, … , 𝑋𝑛 |𝑟) ∝  ∏[(∑ 𝑝𝑎(𝑋𝑖) 𝜙𝑎 exp[𝑟(𝑡 − 𝑎)]
𝐴𝑚𝑎𝑥

𝑎=1
)
𝐼(𝑋𝑖< 𝐶𝐿𝑂𝐷)

(1 −∑ 𝜙𝑎 exp[𝑟(𝑡 − 𝑎)]
𝐴𝑚𝑎𝑥

𝑎=1
)
𝐼(𝑋𝑖≥ 𝐶𝐿𝑂𝐷)

]

𝑛

𝑖=1

, 

if detectable and undetectable Ct values are recorded. If only detectable Ct values are recorded, 

then the parametric likelihood is given by: 

ℒ(𝑋1, … , 𝑋𝑛 | 𝑟) ∝  
∏ [∑ 𝑝𝑎(𝑋𝑖) 𝜙𝑎 exp[𝑟(𝑡 − 𝑎)]

𝐴𝑚𝑎𝑥
𝑎=1 ]𝑛

𝑖=1

(∑ 𝜙𝑎 exp[𝑟(𝑡 − 𝑎)]
𝐴𝑚𝑎𝑥
𝑎=1 )

𝑛 . 

 To incorporate uncertainty in the distribution of viral loads on each day after infection, we 20 

construct a Bayesian framework for estimation and inference. In this paper, we use a normally-

distributed prior for 𝑟 with mean 0 and standard deviation 0.25, fitted using a Markov chain Monte 

Carlo (MCMC) algorithm to obtain the posterior distribution. Note that 𝑟 = 0.1 corresponds to a 

doubling time for new infections of approximately one week. The prior distributions for the 

parameters for the Ct kinetics model are given in Table S1 and described above. 25 

This method also results in posterior distributions for the parameters for the Ct kinetics 

model. These are nuisance parameters for estimation of the epidemic trajectory but may be useful 

in improving the priors for future use of this model. 

 

 30 
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SEIR Model 

 As an alternative parameterization of the likelihood, we also use the SEIR compartmental 

model described above (see Epidemic Transmission Model). We generate Ct values for all 

exposed, infectious, and recovered individuals when they are sampled based on the Ct value model 

described above. This model is most appropriate for a relatively closed population, where the 5 

outbreak is initiated by one or several initial infections and no transmission-reducing measures are 

taken over the time period studied. We use this model for the long-term care facility outbreaks 

observed early in the SARS-CoV-2 pandemic in Massachusetts and the single cross-section 

analyses using the BWH data. 

 The prior distributions for the parameters of the SEIR model are given in Table S1. For 10 

any set of parameter values, the daily probability of infection, 𝜋𝑡, is determined by finding the 

incidence of newly exposed individuals and the likelihood found using the appropriate 

nonparametric likelihood equation (either including all samples or only samples with a detectable 

Ct value) given above. Posterior distributions for the SEIR model parameters are obtained using 

MCMC fitting, along with posterior distributions for the Ct kinetics model parameters. From the 15 

posterior estimates of the SEIR model parameters, posterior distributions can also be found for 

related model features, such as Rt, as of the testing day t (20, 32). Under this model, the parameter 

𝐴𝑚𝑎𝑥 is simply taken as the number of days between testing day t and day 0 of the modeled period. 

For example, in the long-term care facility analyses, day 0 was assumed to be February 1, 2020, 

and the epidemic seed date, t0, was estimated. 20 

Gaussian Process Model 

We present results from the Gaussian process model in terms of the posterior distribution 

for 𝜋𝑡, the daily incidence rate values. For identifiability, the sum of 𝜋𝑡 over all possible values of 

𝑡 is set equal to 1; thus, the resulting estimates should be considered the relative probability of 

infection on each day, relative to the set of possible days. When only positive PCR test results are 25 

included in the inference, we estimate 𝜋𝑡 directly. When negative PCR tests are also included, we 

multiply 𝜋𝑡 by an estimated scaling factor between 0 and 1, which is the absolute probability of 

infection from the entire incidence curve. Xu et al. describe and illustrate the use of the GP as a 

prior distribution for nonparametric inference on incidence rates for various infectious disease 

settings (34). Under this model, 𝜋𝑡 is considered for each day of the simulation, and there is no 30 

separate epidemic seed time parameter as in the SEIR model. To account for the fact that Ct values 

sampled on day t will have arisen from infections up to 𝐴𝑚𝑎𝑥 days prior to the first sampling time, 

we set 𝐴𝑚𝑎𝑥 to 35 days. This captures most individuals who were infected prior to the first 

sampling date and are still detectable. Therefore, when fitting the Gaussian process model to 

multiple rounds of test data, a daily probability of infection parameter 𝜋𝑡 is estimated for each day 35 

in the time period  𝑇𝑚𝑖𝑛 − 𝐴𝑚𝑎𝑥 to 𝑇𝑚𝑎𝑥, where 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 are the earliest and latest testing 

days respectively. Finally, we note that the Gaussian process hyperparameters, 𝜈 and 𝜌, were fixed 

in the model fitting. Although it is theoretically possible to jointly estimate 𝜈 and 𝜌 (with 
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exponentially distributed priors), we found that not constraining these parameters led to very 

poorly converged chains when fitting the model. 

Epidemic Seed Time Priors 

 External information on the epidemiological context can be used to further constrain 

estimated epidemic trajectories. When fitting the SEIR model to the single cross-sections of Ct 5 

values from the BWH in Massachusetts, we are estimating the dynamics of a single epidemic peak 

that precedes the observation time. We therefore placed uniform priors on the epidemic seed time, 

t0, to reflect prior knowledge of the start of the two epidemic growth phases. Specifically, for 

samples taken prior to June 1, 2020, we assumed that the seed time was between February 1, 2020, 

and April 1, 2020. For samples taken between June 1, 2020, and August 1, 2020, we assume that 10 

the seed time is unknown between February 1, 2020, and two weeks prior to the sample time. This 

captures the assumption that we do not know if infections during this time are dominated by the 

decline phase of the first wave or the growth phase of the second. If the sample time was after 

August 1, 2020, we assume that the seed time of the second wave is unknown between June 1, 

2020, and 2 weeks prior to the sample time. This ensures that we are estimating incidence based 15 

on the second wave for these later samples.  

As a sensitivity analysis, we instead assumed that the epidemic seed time was unknown 

between 2020-02-01 and the sampling date for all sampling times (Fig. S14D,E). Estimated growth 

rates were very similar, though the posterior densities for the first four weeks were wider when the 

epidemic seed times were less constrained. Some of the posterior estimates were bimodal (Fig. 20 

S15), where the same Ct distribution could be explained as resulting from very recent and fast 

epidemic growth (most high Ct values are from the upswing of a recent infection) or from the 

downswing of a declining epidemic (most high Ct values are from the clearance phase). Although 

our method is able to accurately estimate these bimodal posterior distributions, it is important to 

interpret them alongside the epidemiological context. Without suitable priors, estimates that are 25 

mathematically correct are not necessarily epidemiologically plausible. 

 

 

Comparison of Analysis Methods 

Simulated Long-Term Care Facility Outbreaks 30 

To ensure that our method provides accurate estimates of the epidemic trajectory using 

either only detectable Ct values or all PCR test results, we performed extensive simulation-

recovery experiments using synthetic closed populations undergoing stochastic SEIR epidemics 

(Figs. S9, S10A). We evaluated the accuracy and precision of growth rate estimates from the SEIR 

and exponential growth models fitted to cross-sectional Ct values observed during epidemic 35 

growth, decline and around the peak (Fig. S10B–D). The SEIR model consistently provided 

unbiased, constrained daily growth rate estimates at all three timepoints when all sample results 
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were used. When only the distribution of detectable Ct values was used, estimates during the 

growth and decline phases were accurate but exhibited wide credible intervals, whereas estimates 

during the peak phase were slightly biased upward. Estimates of the average growth rate from the 

exponential model were consistent using either all or only positive samples—slightly higher than 

the daily growth rates from the SEIR model during the peak and decline phases, reflecting the drop 5 

in daily growth rate relative to the past average as the epidemic begins to decline.  

We also found that increasing the simulated population size from 300 to 5000 did not 

change the accuracy of our estimates and had only a modest impact on 95% credible interval widths 

(Fig. S11). Similarly, using progressively less informative priors for the viral kinetics parameters 

did not change the accuracy of the inferred growth rates, but did increase the uncertainty in the 10 

growth rate estimates (Fig. S12). 

Symptom-based Reporting 

 Reported case counts arise from a model of symptom onset and reporting delays following 

infection. We assume a log-normal incubation period with mean of log(5) days and standard 

deviation 0.418, as estimated by Lauer et al. (68). In the simulation, we assumed that 35% of 15 

individuals were symptomatic, with an incubation period drawn from this log-normal distribution. 

Each symptomatic individual then has some probability of being tested with a delay between 

symptom onset and test report date, where this probability may vary by day of the outbreak. Three 

scenarios are considered: flat testing (fixed probability of testing of 10%); increasing testing rates 

(a linear increase in probability of testing from 10% 36 days prior to the analysis day to 20% one 20 

day prior to the analysis day); decreasing testing rates (a linear decrease in probability of testing 

from 10% 36 days prior to the analysis day to 1% one day prior to the analysis day). 

Rt is estimated from these simulated data using the R package EpiNow2 (32, 33), which is 

available at https://github.com/epiforecasts/EpiNow2. This requires the following inputs: 

1. Time series data for the number of newly confirmed cases per day. 25 

2. A specified incubation period distribution, giving the distribution of delays between 

infection and symptom onset. 

3. A specified reporting delay distribution, giving the distribution of delays between symptom 

onset and case confirmation. 

4. Priors on the generation interval distribution, specifying the mean and standard deviation 30 

of the times between infection in infector-infectee pairs. 

For the reporting delay distribution, we assumed a discretized gamma distribution with 

shape and scale parameters of 5 and 2 respectively (mean of 2.5 days and standard deviation of 

1.12 days). For the generation interval, in our simulations using the SEIR model, the mean 

generation interval is given by 𝑇𝑐 = 1/𝜎 +  1/𝛾, where 𝜎 and 𝛾 are the inverse of the mean 35 

incubation and infectious periods in days, respectively. The variance of the generation interval 
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distribution is given by 𝑉𝑎𝑟 = 2 (
𝑇𝑐

2
)
2

. Therefore, 𝑇𝑐 =8 days, with standard deviation of 5.66 

days. In EpiNow2, normal priors were placed on these quantities with standard deviations of 3 for 

both. 

 

Random Surveillance 5 

For the surveillance Ct sample analyses, we use random sampling where each individual 

has a 0.3% probability of being tested at some point in the outbreak. We consider a single testing 

day (sampling 0.3% of the population), two testing days one week apart (sampling 0.15% of the 

population on each day), and three testing days each one week apart. For the three testing days, we 

consider scenarios where the probability of being sampled on any one of those days is flat at 10 

approximately 0.1%, rising from 0.05% to 0.10% to 0.15%, or falling from 0.15% to 0.10% to 

0.05% across the three days. In all of these settings, approximately 3000 total tests are conducted. 

Fig. 3B plots the estimates using these methods from 100 simulations at two time points in the 

epidemic: one before the peak incidence (true Rt > 1) and one after the peak incidence (true Rt < 

1). 15 

Fig. S13 compares results from the surveillance sample analyses using Ct values to those 

using positivity rates alone for total surveillance sample sizes ranging from 100 to 3000. The 

sample sizes are split among one to three test days, with multiple test days one week apart, with 

the three test days further incorporating rising testing, falling testing, or flat testing across the three 

days. Fig. S13A displays the median and interquartile range (IQR) of the median posterior Rt 20 

estimates from 100 samples, Fig. S13B displays the mean squared error of the median posterior Rt 

estimate from 100 samples, Fig. S13C displays the mean width of the 95% credible intervals for 

the Rt estimate from 100 samples, and Fig. S13D displays the proportion of the 100 samples in 

which the 95% credible interval lies entirely above 1 for a growing epidemic or below 1 for a 

declining epidemic. 25 

Comparison to Model Fitting Using Only Percent Positive Tests 

We also consider estimation of the SEIR model using only the positivity rates (i.e., 

proportion of tests with Ct values below 40) from the surveillance samples. In this case, we fit the 

SEIR model to the prevalence estimate assuming that PCR positivity occurs if and only if an 

individual is in the infectious compartment. As in the rest of the model fitting, we used the same 30 

MCMC framework and priors, but used a binomial likelihood for the number of observed positive 

and negative test results conditional on the SEIR model trajectory. 
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Fig. S3. The incubation period distribution from individuals sampled on a particular day 

under symptom-based surveillance will vary depending on the epidemic growth rate. Under 

any surveillance strategy, the distribution of observed delays between infection date and test report 

date is a convolution of the infection incidence curve and the reporting delay distribution (time 5 

from infection to reporting a test result), which includes the incubation period distribution in 

symptom-based surveillance (32). Through this convolution, the distribution of delays between 

infection date and report date will change depending on the epidemic growth rate even if the 

underlying incubation period and testing delay distributions remain unchanged. This figure 

illustrates how the distribution of observed incubation periods conditional on time of symptom 10 

onset will differ from the incubation period distribution conditional on time of infection. From the 

time of infection, the distribution of incubation periods will always follow the incubation period 

shown in the top right of the figure (i.e., how long do I expect to wait until symptom onset?). 

However, when measuring this distribution for all individuals with symptom onset on day t (i.e., 

given that I had symptom onset today, when was I infected?), the distribution of observed 15 

incubation periods will be a mixture of infections on previous days with long or short incubation 

period periods: individuals could have symptom onset from an older infection with a long 

incubation period (grey figure) or from a recent infection with a short incubation period (black 

figures). The incidence curve determines the weights of the contribution of recent infections with 

short incubation periods and of older infections with long incubation periods. Growing incidence 20 

results in a higher proportion recent infections, whereas declining incidence results in a higher 

proportion of older infections. Note, the star symbol represents the mathematical operation of 

convolution. 
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Fig. S4. The Ct value distribution is expected to change over an epidemic under symptom-

based surveillance. To demonstrate this point, a stochastic SEIR model was simulated with switch 

points at days 80 and 150, representing changes in R0 driven by implementation of non-

pharmaceutical interventions or increasing virus transmissibility. R0 changes were interpolated to 

smooth transitions between epidemic stages. Symptom-based surveillance was simulated 5 

assuming that each infected individual had a 35% change of becoming symptomatic and 

subsequently tested, had an incubation period drawn from a log-normal distribution shown in (A) 

(66), and had a delay between onset and testing drawn from a gamma distribution with mean 2.5 

days and variance 1.25 days shown in (B). Each sampled individual has a simulated Ct value based 

on the time since infection (note, independent of the incubation period). Simulated incidence and 10 

effective reproductive number, Rt are shown in (C), where the vertical blue lines show timing of 

R0 switch points. (D), (E) and (F) show LOESS smoothing splines with 95% confidence intervals 

fitted to simulated (D) incubation periods, (E) testing delays over time and (F) Ct values at time 

of sampling. Crucially, splines were fit to data stratified by either date of infection or by date of 

sample collection. These simulations illustrate two key factors which might lead to changing Ct 15 

values over time when observed under symptom-based surveillance: 1) if the expected viral load 

in a symptomatic person declines with time since infection even after conditioning on time since 

symptom onset, then the changing distribution of delays between infection and symptom onset 

shown in (D) will influence measured Ct values; 2) the expected viral load in a test sample declines 

with time from symptom onset to sample collection, therefore measured Ct values will depend on 20 

the epidemic trajectory as the distribution of delays between symptom onset and sample collection 

is influenced by the epidemic growth rate as shown in (E). Note that the relationship shown in (F) 

will depend on whether viral load trajectories are anchored to time of infection, as assumed for the 

results shown in this simulation, or to time of symptom onset (e.g., if a symptom onset is caused 

by reaching a high viral load). If viral loads among symptomatic individuals are only dependent 25 

on the time since symptom onset and not the time since infection, then the relationship shown in 

(D) will no longer have an impact on the Ct distribution. However, the epidemic trajectory will 

still have a weak influence on the Ct distribution mediated by its convolution with the testing delay 

distribution as shown in (E).  

  30 
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Fig. S5. Distributional properties of times since infection (blue line) correlate with epidemic 

growth rate, which can be observed using cycle threshold (Ct) values as a proxy with a 

properly calibrated observation model (green line). Median (Top) and skewness (Bottom) of 

the time since infection (blue line) and observed Ct value (green lines) by average 35-day growth 5 

rate from the simulated susceptible-exposed-infectious-recovered (SEIR) model. The two green 

lines represent two possible observation models (e.g., from different RT-qPCR machines, 

protocols, or swab locations). 
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Fig. S6. Single cross-sectional distributions of observed cycle threshold (Ct) values used to 

reconstruct epidemic trajectories in three additional Massachusetts long-term care 

facilities. (Top) Model-predicted Ct distributions (blue) fitted to the observed Ct values (grey 

bars) from that cross-sectional sample for the second (A), third (B) and fourth (C) long-term care 5 

facilities. Posterior median (black line) and 95% credible intervals for the expected Ct 

distribution (dark blue ribbon), and 95% prediction intervals based on simulated observations 

(light blue ribbon). (Bottom) Each panel shows results from fitting the Ct-based SEIR model 

separately to cross-sections of virologic data from the second (D), third (E) and fourth (F) long-

term care facilities. Shown are random posterior samples (red lines) and the maximum posterior 10 

probability trajectory (black line) for the incidence curve. Note that we use a parallel tempering 

algorithm, so conflicting trajectories are an accurate representation of the multi-modal posterior. 
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Fig. S7. Comparison of growth rate estimates from the Ct-based methods and from the 

SEEIRR compartmental model fitted to point prevalence in three additional Massachusetts 

long-term care facilities. (A) Posterior distribution of prevalence (orange lines and shaded ribbon) 

from the SEEIRR model fit to point prevalence at three sampling times for each facility and 5 

posterior distribution of daily per capita incidence (red line and shaded ribbon) from the same 

model. Black error bars show 95% binomial confidence intervals on PCR positive prevalence. (B) 

35-day (green) and 1-day (pink) average growth rates from fitting the Ct-based SEIR model to the 

three time points (violin plots) or from fitting the SEEIRR model to point prevalence (lines and 

shaded ribbons) for each facility. The three facilities included here are different from the one 10 

shown in Fig. 2. 
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Fig. S8. Prior and posterior distributions of parameters for models fit to observed cycle 

threshold (Ct) values from four Massachusetts long-term care facilities. (A and B) Posterior 

distributions of model parameters from the SEIR model (A) and exponential growth model (B). 

(C) Prior distributions of model parameters used in both models. NH1 is the facility shown in Fig. 5 

2; the others are shown in Figs. S6 and S7. 
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Fig. S9. A single cross-sectional sample of Ct values can be used to accurately re-estimate the 

true incidence curve at all stages of an epidemic. (A) Each plot shows the same simulated 

dataset, assuming that PCR tests were performed on a different set of 1000 randomly selected 

individuals on days 55, 69, 83, 97 and 111 of a simulated stochastic SEIR epidemic in a population 5 

of 100,000 individuals. Ct values at each sample time were simulated conditional on the time since 

infection using the Ct model. Text labels show the percentage of samples testing positive. (B) For 

each cross section, an SEIR curve was fitted using the simulated Ct values, including undetectable 

samples (i.e., the proportion positive). The blue ribbon shows the 95% (light) and 50% (dark) 

credible intervals for the estimated daily incidence curve. The blue line shows the posterior median 10 

daily incidence. The simulation truth is shown in red. The left-hand column shows the results from 

using all Ct values, and the right-hand column shows the results from excluding the data in the 

fitting (using prior information only). (C) As in (B), but using only detectable Ct values (i.e., there 

is no information on the proportion positive). Note that the y-axis shows the relative rather than 

absolute probability of infection; each estimated incidence curve must sum to one in the detectable-15 

only estimates, as all samples are positive and therefore all included individuals are assumed have 

been infected.   
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Fig. S10. In simulations representing the Massachusetts long-term care facilities, the cycle 

threshold (Ct) value-based methods for epidemic trajectory estimation recover the 

simulation parameters for exponential growth and SEIR models with or without negative 

test results. (A) Distribution across 100 simulations of median posterior estimates of daily 5 

infection incidence by model used, stratified by the growth, peak, and decline phases of the 

epidemic. (B–D) Distribution across 100 simulations of median posterior estimates for growth rate 

(B), widths of 95% credible intervals for growth rate (C), and posterior probability that the growth 

rate is greater than 0 (D) at the end of the three phases of the epidemic for each of four models.  
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Fig. S11. Varying population size has little impact on the performance of the cycle threshold 

(Ct) value-based methods for epidemic trajectory estimation using an SEIR model with 

negative test results in recovering simulation parameters similar to the Massachusetts long-

term care facilities parameters. Distribution across 100 simulations of median posterior 5 

estimates of growth rate (A), widths of 95% credible intervals of growth rate (B), and posterior 

probability that the growth rate is greater than 0 (C) at the end of the three phases of the epidemic 

by population size. Results shown are as in Fig. S10B–D, with population size as an additional x-

axis.  
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Fig. S12. Varying the relative strength of the prior distributions has a modest impact on the 

performance of the cycle threshold (Ct) value-based methods for epidemic trajectory 

estimation using an SEIR model with negative test results in recovering simulation 

parameters representing the Massachusetts long-term care facilities parameters. Distribution 5 

across 100 simulations of median posterior estimates of growth rate (A), widths of 95% credible 

intervals of growth rate (B), and posterior probability that the growth rate is greater than 0 (C) at 

the end of the three phases of the epidemic by relative strength of prior distribution. The rightmost 

estimates in each plot (labeled NA) indicate the use of uniform priors on all model parameters. 

Results shown are as in Fig. S10B–D, with relative prior strength as an additional x-axis. Note that 10 
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less informative priors are likely to have a greater impact on credible interval widths when only 

detectable Ct values are included, as information in the proportion positive is lost. 
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Fig. S13. Incorporating Ct values outperforms positivity rates alone in estimating 

susceptible-exposed-infectious-recovered (SEIR) model from surveillance samples, across 
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sample sizes and number of test days. Results across 100 simulations for median and 

interquartile range of median posterior Rt estimates (A), mean squared error of median posterior Rt 

estimates (B), mean width of 95% credible interval for Rt estimate (C), and percent of 95% credible 

intervals which lie entirely above 1 for a growing epidemic or below 1 for a declining epidemic 

(D). The total sample size across all testing days is given on the x-axis. For multiple testing days, 5 

the days are one week apart, with the same final day of testing in all cases: epidemic day 60 in the 

growing epidemic panels and epidemic day 88 in the declining epidemic panels. For each sample 

size, the leftmost point uses the Ct values, fitting an SEIR model with a population-level viral 

kinetics model and the rightmost (semi-transparent) point uses the positivity rate of the tests alone, 

fitting an SEIR model assuming PCR positivity is equivalent to infectiousness.  10 
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Fig. S14. All single cross-section growth rate estimates using Ct values from Brigham & 

Women’s Hospital, Massachusetts. Dials show estimated growth rates using data collected in 

the week shown to the left of the plot. Dials range from -0.5 to +0.5 (i.e., left of the vertical axis 

indicates epidemic decline). Shaded regions show posterior or prior densities. Yellow arrows show 

posterior medians and black arrows show prior medians. Note that wide estimates represent true 5 

multimodal posterior distributions, as these Ct distributions could be generated either at the start 

of fast growth or in decline phases (see Fig. S15). (A) Prior daily growth rates (grey) from the 

SEIR model assuming constraints on the epidemic seed time. (B) Posterior daily growth rates 

(blue) from the SEIR model assuming constraints on the epidemic seed time. (C) Posterior 35-day 

average growth rates (green) from the exponential growth model. (D) Prior daily growth rates 10 

(grey) from the SEIR model, assuming no constraints on the epidemic seed time. (E) Posterior 

daily growth rates (red) from the SEIR model, assuming no constraints on the epidemic seed time.  
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Fig. S15. Estimated epidemic trajectories from single cross sectional Ct distributions can be 

multimodal. (A) Estimated daily growth rate using single cross-sections of Ct values from 

samples obtained in the week commencing 2020-05-03 and the SEIR model with no constraints 5 

on the epidemic seed time. Red shaded region shows posterior densities, yellow arrows show 

posterior medians. (B) As in (A) but placing a prior constraint on the epidemic seed time to be 

prior to April 1, 2020. (C) Epidemic trajectory using BWH data sampled in the week commencing 

May 3, 2020. Each line is a randomly drawn posterior sample for the SEIR incidence curve using 

the posteriors shown in (A). Lines are colored based on whether the seed time was before April 1, 10 
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2020, or after. Point range plots show 95% credible intervals and posterior median on the epidemic 

seed time depending on whether the seed time was before or after April 1, 2020, demonstrating a 

multimodal posterior. (D) MCMC trace plots for estimated parameters underpinning the 

trajectories in (C). Trace plots demonstrate good convergence, but clear multi-modality for R0 and 

t0; the same data can be explained with either high R0 and late t0, or low R0 and early t0.   5 
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Fig. S16. Data and results summaries for estimation of epidemic trajectory in Massachusetts 

shown in Fig. 4. (A) Histogram of observed cycle threshold (Ct) values by weekly sample. Blue 

line shows posterior median blue ribbon shows 95% credible intervals (CrI) for the expected Ct 

distribution. (B) Model-predicted proportion of samples with detectable Ct value by weekly 

sample. Point-range plot shows posterior median and 95% CrI. (C) Prior vs. posterior density of 5 

model parameters from Gaussian process model fit to observed Ct value data. (D) Markov chain 

Monte Carlo trace plots for model parameters fit to observed Ct value data. (E, F) Prior vs. 

posterior density of population-level observed Ct value model, mean Ct value (E) and probability 

of having a detectable Ct value (F), by days since infection fit to observed Ct value data. 

  10 



 

37 

 

  

Fig. S17. Growth rates estimated using cycle threshold (Ct) values from the Brigham & 

Women’s Hospital through fitting either the SEIR model to each single-cross section 

separately or from fitting the Gaussian process model to the full dataset. Green points and 5 

error bars show posterior medians (points), 50% (dark green error bar) and 95% (light green error 

bar) credible intervals (CrI) for the estimated growth rate on the date shown, obtained by fitting 

the SEIR model to each single cross-section of Ct values obtained in that week. The purple line 

and ribbon show the posterior median and 95% CrI for the estimated daily growth rate obtained 

by fitting the Gaussian process model to all of the cross sections simultaneously as in Fig. 4.  10 
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Fig. S18. Estimated epidemic trajectory remained from re-fitting the Gaussian process model 

to progressively smaller subsamples of the full Brigham & Women’s Hospital dataset. Shown 

are the posterior median (blue line), 50% (dark blue ribbon) and 95% (light blue ribbon) credible 

interval (CrI) estimates for the scaled daily probability of infection obtained through fitting the 5 

Gaussian process model to the entire dataset. Note that the y-axis shows the scaled rather than 

absolute probability of infection, as all recorded samples were positive and therefore the 

cumulative probability of infection for the estimated incidence curve must sum to one (all samples 

in the dataset were from infections). Each panel shows the result from fitting the model to a random 

subsample of the full dataset after: i) subsampling to give at most 50 cycle threshold (Ct) values 10 

per week, with no subsampling in weeks with fewer than 51 Ct values; ii) subsampling to give at 

most 25 Ct values per week, with no subsampling in weeks with fewer than 26 Ct values; iii) 

randomly subsampling 25% of the full dataset; iv) randomly subsampling 10% of the full dataset; 

v) randomly subsampling 5% of the full dataset.  



 

39 

 

 

Fig. S19. Epidemic trajectory inferred using cycle threshold (Ct) distributions from routine 

testing in Brigham & Women’s Hospital in Massachusetts tracks viral loads in 

Massachusetts wastewater samples. (A) SARS-CoV-2 viral RNA signal in Massachusetts 

wastewater over time (35). (B) As in Fig. 4, posterior distribution of scaled probability of infection 5 

by date from a Gaussian process (GP) model fit to all observed Ct values (ribbons show 95% and 

50% credible intervals, line shows posterior median). Note that this is the same model fit as in Fig. 

4, but the time axis extended back to March 1, 2020.  
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Parameter Description Prior point estimate Prior 

Viral kinetics and Ct value model 

teclipse Time from infection to initial viral 
growth 

0.00 days Fixed 

Czero Ct value at time of infection 40.0 Fixed 

tpeak Time from initial viral growth to 
peak viral load 

5.00 days Fixed 

Cpeak Modal Ct value at peak viral load 20.6 (LTCF) or 
19.7 (BWH) 

Normal(20.6, 2.00) or 
Normal(19.7, 2.00) 

tswitch Time from peak viral load to 
secondary waning phase 

9.38 (LTCF) or 
13.3 days (BWH) 

Normal(9.38, 3.00) or 
Normal(13.3, 3.00) 

Cswitch Modal Ct value at a = teclipse + tpeak + 
tswitch 

33.0 (LTCF) or 
38.0 (BWH) 

Normal(33.0, 1.00) or 
Fixed 

tLOD Time from infection until modal Ct 
value is equal to the limit of 
detection 

Inf (plateau) Fixed 

paddl Daily probability of detectability loss 
after tswitch 

0.110 (LTCF) or  
0.103 (BWH) 

Beta(11.9, 95.9) or 
Beta(10.5, 91.2) 

VLLOD Limit of detection of viral load (log10 
RNA copies / mL) 

3.00 Fixed 

CLOD Limit of detection of Ct value 40.0 Fixed 

σobs Initial scale parameter for the 
Gumbel distribution until 
a=teclipse+tpeak+tswitch 

5.15 (LTCF) or  
5.00 (BWH) 

Normal(5.15, 0.50) or 
Normal(5.00, 0.50) 

smod Multiplicative factor applied to scale 
parameter for the Gumbel 
distribution starting at a = 
teclipse+tpeak+tswitch+tscale 

0.400 (LTCF) or  
0.789 (BWH) 

Fixed 

tmod Time from secondary waning phase 
until Gumbel distribution reaches its 
minimum scale parameter 

14.0 days Fixed 
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SEEIRR and SEIR models 

R0 Basic reproductive number Estimated 
(4 locations) 

Log-normal(log(2.00), 
0.60) and bound 
between (1.00, 10.0) 
for the SEEIRR 
model; Uniform(1.00, 
10.0) in all SEIR 
models  

t0 Effective seed time Estimated (4 
locations) 

Uniform(2020-03-01, 
2020-05-11) 

I0 Proportion infected at seed time 0.002 (1 in 500) Fixed 

1/σ' Pre-detectable latent period 2.00 Log-normal(log(2.00), 
0.30) 

1/ɑ Pre-infectious incubation period 2.00 Log-normal(log(2.00), 
0.30) 

1/γ’ Infectious period (SEEIRR) 4.00 Log-normal(log(4.00), 
0.60) 

1/w Post-infectious detectable period 
(SEEIRR) 

11.0 Log-normal(log(11.0), 
0.30) 

1/σ Incubation period (SEIR) 4.00 Log-normal(log(4.00), 
0.25) 

1/γ Infectious period (SEIR) 4.00 Log-normal(log(4.00), 
0.50) 

GP model 

 Maximum covariance between two 
time points 

1.50 Fixed 

 Rate of decline of the covariance 
between two time points as distance 
increases 

0.03 Fixed 

Table S1. Parameters used the viral load and cycle threshold (Ct) value distribution, the 

susceptible-exposed-infectious-recovered (SEIR) transmission model, the SEEIRR 

transmission model, and the Gaussian process (GP) model. Note that different priors for the 

viral kinetics parameters are assumed for the Massachusetts Long-Term Care Facilities (LTCF) or 

Brigham & Women’s Hospital (BWH) data. 5 
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Movie S1. Multiple cross-sections of cycle threshold (Ct) values can be combined to improve 

the estimation of the epidemic trajectory over time. Animation of epidemic trajectory 

estimation (Bottom) using the Gaussian process GP model fit repeatedly to weekly samples of 

observed cycle threshold (Ct) value data (Top) in an ongoing simulated epidemic. 2000 samples 

were randomly taken from the population each week. The red line indicates the true daily per capita 5 

incidence of the simulated data. The blue line and ribbons show the posterior median, 50% (dark 

blue) and 95% (light blue) credible intervals for the estimated daily per capita incidence curve. 

Dashed vertical lines show time of sample collection. Incidence was estimated back to 35 days 

prior to the first sample time. 

Movie S2. Estimated epidemic trajectories using multiple cross-sections of cycle threshold 10 

(Ct) values at different weekly sample sizes. Using the same simulation and Gaussian process 

(GP) model as in Movie S1, the animation shows the results estimating the underlying per capita 

incidence curve each week using no data (prior only), 50, 200, 500, 1000 or 2000 Ct values 

(including negative samples) obtained each week through randomly sampling the population. 

Dashed vertical lines show time of sample collection. The blue line and ribbons show the posterior 15 

median, 50% (dark blue) and 95% (light blue) credible intervals for the estimated daily per capita 

incidence curve. Incidence was estimated back to 35 days prior to the first sample time. 

Movie S3. Multiple cross-sections of cycle threshold (Ct) values can estimate the underlying 

incidence curve when sampling is initiated partway through the epidemic. Using the same 

simulation, sampling scheme and Gaussian process (GP) model as in Movie S1, but with sampling 20 

commencing part way through the epidemic. (Top) cycle threshold (Ct) data used for the 

simulation. (Bottom) the red line indicates the true daily per capita incidence of the simulated data. 

The blue line and ribbons show the posterior median, 50% (dark blue) and 95% (light blue) 

credible intervals for the estimated daily per capita incidence curve. Dashed vertical lines show 

time of sample collection. Incidence was estimated back to 35 days prior to the first sample time. 25 

Data S1. Ct values and collection dates for samples obtained from four long-term care 

facilities in Massachusetts. Variables included are anonymized facility identifier, collection 

date and week, RT-qPCR result, anonymized unique identifier, and RP (control), N2 and N1 Ct 

values. 

Data S2. ORF1ab Ct values and collection dates for samples obtained from the Brigham  30 

& Women’s Hospital, Massachusetts.  
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