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Introduction
This supporting information provides additional details about BedMachine v3: what is included in

the NetCDF file, the kriging parameters used in the interior of the ice sheet, and some details about the
method to produce synthetic bathymetry.

Text S1: BedMachine v3 dataset
The data will be available in one single file in NetCDF format (2.1G Gb) and all heights are in meters
above mean sea level (the geoid used is provided in the NetCDF file). All the data use the same 150 m-
resolution grid although the “true” resolution of the bed topography and ice thickness varies depending
on the method used and the input data. This dataset uses data from 1993 to 2016 and has a nominal date
of 2007 (same as the GIMP DEM from Howat et al. [2014]). The following fields are provided:
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Figure S1: Left: The ice/land/ocean masks are from Howat et al. [2014], and the floating ice is derived
from InSAR grounding lines. Right: Surface dem is from Howat et al. [2014]
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Figure S2: Left: Methods used to compute the bed topography. Right: Ice thickness
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Figure S3: Left: Bed topography. Right: Bed topography error margin
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Figure S4: Difference between ice thickness from BedMachine v3 and v1

Text S2: Kriging parameters
For the kriging in the interior of the ice sheet, we used the kriging algorithm that is part of the Ice Sheet
System Model ISSM. The variogram is modeled as a Gaussian function, with a sill of 100 m, a range of
8 km and a nugget effect of 50 m, to account for uncertainty in ice thickness measurements.

Text S3: Synthetic fjord bathymetry
Due to its sinuous and anisotropic nature, the mapping of fjord bathymetry is treated separately from
bathymetry further from the Greenland coast. On a case-by-case basis, where a fjord - or part of a fjord -
has limited observational coverage, it is assigned a geospatial network structure by mapping nodes along
its centerline and across its width using the synthetic fjord bathymetry method described in [Williams
et al., 2017], available here https://zenodo.org/record/827347 (DOI:10.5281/zenodo.827346),
and as described below. As an approximation, fjords are assumed to adopt a parabolic (“U-shaped”)
cross-sectional profile geometry that propagates along their length. Elevations at either end of the fjord
centerline are taken from the nearest prior constrained elevations. At the fjord head, this includes bed
elevations from mass conservation, and at the fjord mouth this includes the nearest bathymetric observa-
tions. Where the synthetic method is applied, each parabolic fjord cross section is determined by three
declared elevations. At the fjord edges these are extracted from ice free altimetry [Howat et al., 2014]
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and across the fjord’s width, any available observations are used. If observations are available along
the fjord length, this ensures the synthetic profile incorporates those measurements. Elevations are then
assigned along the entire centerline by linear interpolation between points. In the worst case, this linear
interpolation will be between only 2 points - the head and mouth of the fjord. The imposition of this
synthetic structure provides a series of points which can then be integrated into the overall DEM gridding
procedure, removing reliance on interpolation procedures to predict likely fjord structure in regions of
poor observational coverage. An example of the impact of the synthetic bathymetry method is illustrated
in figure S5, comparing B2013 to BedMachine v3. Of particular note is that the synthetic fjord method
leads to a reduced overestimation of depths than previous bed/bathymetry datasets.
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Figure S5: Bed topography of Godthåbsfjord from B2013 [Bamber et al., 2013], and this new study,
which includes synthetic bathymetry in the fjord.

Text S4: Examples of mass conservation
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We illustrate here how MC optimizes the input data to best fit ice thickness measurements over the region
of Upernavik in Northwest Greenland, and Helheim in Southwest Greenland. The first figure (Fig. S6)
shows the initial input data and the resulting calculated ice thickness, i.e., we take the input data as they
are and compute the ice thickness by solving:{

∇ ·Hv̄ = ȧ in Ω
H = Hobs on Γ−

(1)

where H is the ice thickness, v̄ is the depth-averaged ice velocity vector, ȧ is the apparent mass balance
(i.e. surface mass balance minus rate of thickness change).

In figure S7, we show the same fields but after optimization: we change the input data (v̄ and ȧ)
in order to minimize the misfit between the calculated ice thickness H , and IPR derived ice thickness
measurements. Here, we allow the velocity to decrease by up to 5% (since v̄ might be smaller than
surface velocity due to vertical shear), and the apparent mass balance is allowed to change by up to ±2
m/a to account for error in surface mass balance or thinning rates. Our control spaces are therefore:

ȧ ∈ {ȧobs + α m/a, α ∈ [−2 2]} (2)

vx ∈
{
α1v

obs
x + α2 m/a, α1 ∈ [0.95 1] , α2 ∈ [−50 50]

}
(3)

vy ∈
{
α1v

obs
y + α2 m/a, α1 ∈ [0.95 1] , α2 ∈ [−50 50]

}
(4)

Finally, figure S8 shows the difference between the original input data and the optimized output.
Figures S9, S10 and S11 show the same fields on Helheim.
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Figure S6: (a) MC calculated ice thickness before optimization, (b) initial apparent mass balance, (c)
observed surface x-component of the ice velocity, (d) observed surface y-component of the ice velocity.
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Figure S7: (a) MC calculated ice thickness after optimization, (b) optimized apparent mass balance, (c)
optimized depth averaged x-component of the ice velocity, (d) optimized depth averaged y-component of
the ice velocity.
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Figure S8: (a) difference between initial and optimized ice thickness, (b) difference between initial and
optimized apparent mass balance, (c) between initial and optimized v̄x, (d) between initial and optimized
v̄y.
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Figure S9: (a) MC calculated ice thickness before optimization, (b) initial apparent mass balance, (c)
observed surface x-component of the ice velocity, (d) observed surface y-component of the ice velocity.
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Figure S10: (a) MC calculated ice thickness after optimization, (b) optimized apparent mass balance, (c)
optimized depth averaged x-component of the ice velocity, (d) optimized depth averaged y-component of
the ice velocity.
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Figure S11: (a) difference between initial and optimized ice thickness, (b) difference between initial and
optimized apparent mass balance, (c) between initial and optimized v̄x, (d) between initial and optimized
v̄y.
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