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Abstract

The two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, on-board 

NASA’s Terra and Aqua satellites, have provided more than a decade of global fire data. Here we 

describe improvements made to the fire detection algorithm and swath-level product that were 

implemented as part of the Collection 6 land-product reprocessing, which commenced in May 

2015. The updated algorithm is intended to address limitations observed with the previous 

Collection 5 fire product, notably the occurrence of false alarms caused by small forest clearings, 

and the omission of large fires obscured by thick smoke. Processing was also expanded to oceans 

and other large water bodies to facilitate monitoring of offshore gas flaring. Additionally, fire 

radiative power (FRP) is now retrieved using a radiance-based approach, generally decreasing FRP 

for all but the comparatively small fraction of high intensity fire pixels. We performed a Stage-3 

validation of the Collection 5 and Collection 6 Terra MODIS fire products using reference fire 

maps derived from more than 2500 high-resolution Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) images. Our results indicated targeted improvements in the 

performance of the Collection 6 active fire detection algorithm compared to Collection 5, with 

reduced omission errors over large fires, and reduced false alarm rates in tropical ecosystems. 

Overall, the MOD14 Collection 6 daytime global commission error was 1.2%, compared to 2.4% 

in Collection 5. Regionally, the probability of detection for Collection 6 exhibited a ~3% absolute 

increase in Boreal North America and Boreal Asia compared to Collection 5, a ~1% absolute 

increase in Equatorial Asia and Central Asia, a ~1% absolute decrease in South America above the 

Equator, and little or no change in the remaining regions considered. Not unexpectedly, the 

observed variability in the probability of detection was strongly driven by regional differences in 

fire size. Overall, there was a net improvement in Collection 6 algorithm performance globally.
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1. Introduction

NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) active fire products 

(Justice et al., 2002) were the first in a family of remotely sensed fire data sets produced 

from a new generation of moderate resolution (~1 km), “fire-capable” sensors on-board 

terrestrial satellites. Since their inception in 2000, the MODIS fire products have been used 

to help answer a broad range of scientific questions concerning the role of biomass burning 

within the Earth system (e.g. Chen, Velicogna, Famiglietti, & Randerson, 2013; Chuvieco, 

Giglio, & Justice, 2008; Ichoku & Kaufman, 2005; McCarty, Justice, & Korontzi, 2007; 

Mollicone, Eva, & Achard, 2006; Peterson, Hyer, & Wang, 2014; Vadrevu et al., 2012; 

Wooster & Zhang, 2004), and in numerous operational applications (e.g. Kaiser et al., 2012; 

Longo et al., 2010; Reid et al., 2009; Ressl et al., 2009; Sofiev et al., 2009; Wiedinmyer et 

al., 2011). The products have been found to have utility in the context of social and cultural 

analyses as well (e.g. Bromley, 2010; Koren, Remer, & Longo, 2007; Schroeder, Giglio, & 

Aravéquia, 2009).

A key element of NASA’s Earth Observing System (EOS) mission is the capability to 

periodically reprocess the raw instrument data archive, using updated calibration and 

geolocation information, as well as the derived products (Justice et al., 2002). Reprocessing 

is an essential requirement for producing consistent, science quality data sets suitable for 

long-term monitoring of both regional and global change. As part of the EOS, most of the 

MODIS land products have been reprocessed periodically to implement algorithm changes 

and refinements. Here we describe improvements made to the active fire detection 

algorithm, and the associated MOD14 (Terra) and MYD14 (Aqua) fire products, for 

Collection 6, which represents the fourth major reprocessing of the MODIS time series. The 

Collection 6 algorithm is intended to address limitations observed with the previous 

Collection 5 fire product, notably the occurrence of false alarms arising from small forest 

clearings, and the omission of large fires obscured by thick smoke (Schroeder et al., 2008). 

Processing was also expanded to oceans and other large water bodies to facilitate monitoring 

of offshore gas flaring. We begin by briefly summarizing the status of the Collection 5 active 

fire products in Section 2. In Section 3, we describe the Collection 6 algorithm, emphasizing 

those aspects that have changed since Collection 5. In Section 4, we present a rigorous 

validation of both the Collection 5 and Collection 6 Terra MODIS fire product using a large 

sample of coincident, high resolution imagery from the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER).

2. Collection 5 product and algorithm status

Production of the Collection 5 MODIS fire products commenced in mid-2006. Since then, 

the products have been evaluated in a number of independent studies (e.g., Csiszar, 

Morisette, & Giglio, 2006; de Klerk, 2008; Freeborn, Wooster, & Roberts, 2010; Hantson, 

Padilla, Corti, & Chuvieco, 2013; Hawbaker, Radeloff, Syphard, Zhu, & Stewart, 2008; He 

& Li, 2011; Maier, Russell-Smith, Edwards, & Yates, 2013; Schroeder et al., 2008; Tanpipat, 

Honda, & Nuchaiya, 2009), and in the context of optimizing the global MODIS algorithm 

for use within a specific region (e.g. Cheng, Rogan, Schneider, & Cochrane, 2013; Ressl et 

al., 2009; Wang, Qu, Hao, Liu, & Sommers, 2007). A finding common to many of these 
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studies is that the global thresholds used to narrow the search for fire pixels (the “potential 

fire thresholds”) are too high for some regions, rendering the algorithm unable to detect the 

(generally) smaller and/or cooler fires characteristic of these regions. In an analysis of small 

fires in the southeastern United States, for example, Wang et al. (2007), Wang, Qu, Hao, and 

Liu (2009) found that a large fraction of fire pixels had 4-μm brightness temperatures below 

the 310 K daytime potential fire threshold used in the Collection 5 algorithm. The authors 

were able to substantially increase the likelihood of detecting these small fires by reducing 

the threshold to 293 K, with the stipulation that only those pixels within ≈7 km of smoke 

(identified automatically using a series of spectral tests) would be considered so as to 

maintain an acceptable false alarm rate. As part of an evaluation of the MODIS product in 

the Yucatán Peninsula, Cheng et al. (2013) reported that the “… largest single contributor to 

the detection omission was the 310 K MODIS 4-μm threshold”, and recommended a 

reduction in the daytime threshold to 305 K for the densely forested areas ubiquitous 

throughout that region.

While the majority of the above studies emphasized omission errors, it is important to 

consider commission errors, or false alarms, as well. On this front, the most exhaustive effort 

to date was that of Schroeder et al. (2008), who validated the Collection 5 Terra MODIS fire 

product within the Brazilian Amazon using a combination of high resolution Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Landsat-7 imagery, 

airborne data, and ground observations. Among other findings, the authors reported a very 

high commission error rate (~35%) for the MODIS product associated with small forest 

clearings within the Brazilian Amazon.

Based on the above findings, and in conjunction with our ongoing quality assessment of and 

experience with the Collection 5 fire products, we implemented targeted refinements to the 

MODIS detection algorithm for the Collection 6 reprocessing that commenced in May 2015. 

Those refinements are described in the next section.

3. Collection 6 algorithm description

The detection algorithm uses native (i.e., unprojected swath) 4-, 11-, and 12-μm brightness 

temperatures derived from the corresponding 1-km MODIS channels, denoted by T4, T11, 

and T12, respectively, and, for daytime observations, 0.65-, 0.86-, and 2.1-μm reflectance 

(denoted by ρ0.65, ρ0.86, and ρ2.1, respectively), aggregated to 1-kmspatial resolution. Table 

1 provides a summary of all MODIS bands used in the algorithm.

The goal of the detection algorithm is to identify “fire pixels” that contain one or more 

actively burning fires at the time of the satellite overpass. To this end, the algorithm 

ultimately classifies each pixel of the MODIS swath as missing data, cloud, non-fire, fire, or 

unknown. For the sake of backwards compatibility, the Collection 6 fire products actually 

use a slightly larger set of classes that can be uniquely mapped into the five classes defined 

here. Framing the algorithm output in terms of these five classes, however, greatly simplifies 

the subsequent description of the Collection 6 algorithm. Full details may be found in the 

product User’s Guide (Giglio, 2015).
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A flowchart of the detection algorithm is shown in Fig. 1. Pixels lacking valid data (e.g., 

during a calibration maneuver) are summarily assigned to a class of missing data and 

excluded from further consideration.

3.1. Land and water masking

Water, land, and coastal pixels are identified using the updated 1-km land/sea mask 

contained in the MODIS Collection 6 MOD03/MYD03 geolocation product. Coastal pixels 

are not processed further by the detection algorithm (aside from being counted) since any 

residual fragments of unmasked land will usually appear brighter and warmer than the 

surrounding water, and may easily be mistaken for a small fire. Fig. 2 shows a global sample 

of fire pixels detected over water during January 2007.

3.2. Cloud masking

While generally adequate, the cloud mask employed in the Collection 5 algorithm 

occasionally misclassified thick smoke as cloud, thus preventing identification of an 

otherwise detectable fire. To help alleviate this problem, the fixed thresholds used to mask 

clouds have been adjusted slightly for Collection 6. Daytime pixels – defined as those 

having a solar zenith angle less than 85° – are flagged as cloud-obscured (and assigned to 

the class of cloud) if the following combination of conditions is satisfied:

(ρ0.65 + ρ0.86 > 1.2) or (T12 < 265 K) or
(ρ0.65 + ρ0.86 > 0.7 and T12 < 285 K) or
(water pixel and ρ0.86 > 0.25 and T12 < 300 K) .

The relaxed thresholds of the new fourth condition, which is applied only to water pixels, 

exploit the considerable infrared absorption by water. Nighttime pixels are flagged as cloud 

if the single condition T12<265 K is satisfied. As with earlier versions of the algorithm, these 

criteria are adequate for identifying larger, cooler clouds, but consistently miss small clouds 

and cloud edges.

3.3. Identification of potential fire pixels

As with previous versions of the algorithm, a preliminary classification is used to eliminate 

obvious non-fire pixels. Those pixels not eliminated during this stage are considered to be 

potential fire pixels, and undergo further processing.

A daytime pixel is identified as a potential fire pixel if T4 > T4
∗, ΔT>ΔT* (where 

ΔT≡T4−T11), and ρ0.86<0.35 (for nighttime pixels this last condition is dropped). For 

Collection 5 and earlier, the thresholds T4
∗ and ΔT* were fixed at 310 K (305 K at night) and 

10 K, respectively, but for Collection 6 these thresholds are set dynamically for each of the 

1354 sample positions of the current MODIS scan (a MODIS scan is composed of 10 lines, 

each containing 1354 1-km samples, acquired in parallel). This along-scan adjustment helps 

compensate for local variations in the land surface as well as the systematic increase in 

atmospheric path length (and hence atmospheric absorption) with scan angle. Dynamically 

adjusting the potential fire thresholds in this manner was first proposed by Zhukov, Lorenz, 
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Oertel, Wooster, and Roberts (2006) in the course of developing an active fire detection 

algorithm for the experimental Bi-spectral Infrared Detection (BIRD) sensor, and 

subsequently adopted by Wooster, Xu, and Nightingale (2012) in developing a Sentinel-3 

Sea and Land Surface Temperature Radiometer (SLSTR) pre-launch active fire product.

Calculation of the thresholds T4
∗ and ΔT* for each MODIS scan proceeds by averaging the 

values of T4 and ΔT for all cloud- and glint-free (Section 3.6.1) land pixels within a large, 

301-sample by 30-linemoving window centered upon sample position j (0≤j≤1353). As the 

window moves across the scan, a separate T4 and ΔT average is computed for each sample 

position; we denote these large-window averages as mean (T4)j and mean (ΔT)j. The fixed 

dimensions of the large window within “scan space” means that, for nadir pixels, this 

averaging occurs over an area approximately 306 km × 30 km in size at the Earth’s surface, 

growing up to approximately 740 km × 33 km at the edges of the scan.

As a crude means of preventing intense fires from nontrivially biasing the broad-scale 

averages, pixels having T4>360 K (320 K at night) are ignored during averaging. While 

simplistic, this filtering scheme renders any residual bias negligible, since each average is 

calculated from a large sample of pixels. In practice, it is rare for more than a few percent of 

pixels within a window of this size to be true fire pixels.

A potential fire threshold is then independently calculated for each sample position by 

applying a 5 K offset to the large-window averages. Specifically, T4
∗ = mean(T4)

j
+ 5 K, with 

the result constrained so that 300 K ≤ T4
∗ ≤ 330 K, and ΔT*=mean (ΔT)j+5 K, with the result 

similarly constrained so that 10 K≤ΔT*≤35 K. Under this scheme, the two averages required 

for each sample position will be computed from up to 9030 pixels. Averages based on fewer 

than 2000 pixels are deemed unreliable, and for such cases the Collection 5 fixed potential 

fire thresholds are used as a conservative fallback since no reliable information about the 

large-scale local background is available to the algorithm.

The dynamic thresholds calculated in this step are applied only to land pixels. For water 

pixels, the more conservative Collection 5 fixed thresholds are used. In addition to 

recognizing the much smaller variability in surface temperature and emissivity for water, this 

strategy helps prevent false alarms from occurring in the presence of small, unmasked 

islands. We will discuss this issue further in Section 3.6.5.

An example of the magnitude of the differences between the Collection 5 and 6 potential fire 

thresholds for a single 5-min MODIS granule over South America is shown in Fig. 3. In this 

daytime case, 77% of land pixels had a 4- μm potential-fire brightness temperature threshold 

below the 310 K fixed value used in the Collection 5 algorithm. In addition, almost every 

land pixel had a brightness temperature difference threshold (ΔT*) that exceeded the 

Collection 5 fixed value of 10 K. The net result for this granule was to reduce the number of 

potential fire pixels from 49,620 (Collection 5) to 4057 (Collection 6).

We illustrate the impact of the change in potential fire thresholds for Collection 6 using a 

second example from central Siberia, in which numerous large fires are engulfed in thick 
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smoke (Fig. 4). The combination of dynamic thermal potential fire thresholds and increased 

0.86-μm reflectance threshold produced 95 additional fire pixels associated with large fires, 

representing an increase of nearly 44% from Collection 5.

3.4. Background characterization

During the subsequent background characterization phase of the algorithm, the radiometric 

signal of each potential fire pixel in the absence of fire is estimated by computing statistical 

summaries of neighboring pixels within a small spatial window surrounding the potential 

fire pixel. The selection of valid background pixels within this moving window (up to 21 × 

21 pixels in size) is described in detail in Giglio et al. (2003), and remains identical for 

Collection 6, with the important exception that valid background pixels are now restricted to 

either land or water pixels (but never both) to match the land/water state of the potential fire 

pixel.

In lieu of a detailed description of the local statistics computed for the background window, 

we provided a summary in Table 2 and refer the reader to Giglio et al. (2003) for additional 

information. New quantities introduced in Collection 6 include L̄4, the mean 4-μm radiance, 

ρ̄0.86, the mean 0.86-μm reflectance (daytime pixels only), Nc, the number of coast pixels 

within the background, and NL, the number of land pixels excluded from the background 

when the potential fire pixel lies over water.

3.5. Tentative fire detection

In this next phase, the algorithm tentatively identifies pixels containing active fires. For 

nighttime land pixels, this will in fact be a final identification. For water and daytime land 

pixels, a subsequent series of rejection tests will be performed, as described in Section 3.6.

As in Collection 5, the algorithm identifies fire pixels (again, tentatively in the case of water 

and daytime land pixels) by applying a series of absolute and contextual (relative) threshold 

tests to each potential fire pixel. The absolute threshold criterion of Kaufman et al. (1998) 

remains unchanged for Collection 6:

T4 > 360 K (320 K at night) . (1)

Being deliberately conservative, test (1) provides a direct route by which large and/or 

particularly intense active fires can be identified. A suite of contextual tests, which offer 

much greater sensitivity to the much larger proportion of smaller and/or cooler fires, are 

consequently used to supplement the fixed threshold test. In addition to radiometric 

information about the potential fire pixel itself, the contextual tests make use of information 

extracted from the immediate neighborhood, or “background”, as described in Section 3.4. 

These tests, of which there are five, remain unchanged for Collection 6 and are restated here 

for convenience:

ΔT > ΔT + 3.5 δΔT (2)
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ΔT > ΔT + 6 K (3)

T4 > T4 + 3 δ4 (4)

T11 > T11 + δ11 − 4 K (5)

δ4′ > 5 K (6)

A detailed description of each test may be found in Giglio et al. (2003).

A daytime potential fire pixel is tentatively classified as a fire pixel if either i) test (1) is 

satisfied, or ii) tests (2) through (4) are satisfied and either test (5) or test (6) is satisfied, 

otherwise it is classified as a non-fire pixel. A nighttime potential fire pixel is definitively 

classified as a fire pixel if either i) test (1) is satisfied, or ii) tests (2) through (4) are satisfied, 

otherwise it is classified as a non-fire pixel.

For potential fire pixels in which background characterization was not possible (because too 

few valid background pixels were available), only test (1) is applied. If satisfied, the 

potential fire pixel is tentatively classified as a fire pixel, otherwise it is assigned a final class 

of unknown. In practice, this designation is quite rare. During the five-year period from 2005 

through 2009, for example, only 0.001% of all MODIS land pixels (Terra and Aqua 

combined) were assigned a class of unknown in the Collection 5 swath-level fire product.

3.6. Rejection tests

In the final phase of the detection algorithm, pixels tentatively flagged as containing active 

fires undergo a series of false-alarm rejection tests. These include a sun-glint rejection test, 
applied to both land and water pixels, followed by three tests applied only to tentative land 

fire pixels: a desert boundary rejection test, a land-pixel coastal rejection test (formerly 

referred to unqualifiedly as “coastal rejection”), and a new forest clearing rejection test, 
supplemented with a new water-pixel coastal rejection test reserved for tentative fire pixels 

detected over water. Once all applicable rejection tests have been performed, those tentative 

fire pixels that remain are definitively classified as fire, while those that were at any point 

rejected are classified as non-fire.

3.6.1. Sun glint rejection—The sun glint rejection test remains basically the same for 

Collection 6, though two angular thresholds were increased to make the test slightly more 

aggressive in rejecting false alarms, reflecting the fact that the algorithm now seeks to 
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identify somewhat smaller and/or cooler fires than possible for Collection 5. The tentative 

fire pixel is rejected if one or more of the following conditions are satisfied:

θg < 2∘ (7)

θg < 10∘ and ρ0.65 > 0.1 and ρ0.86 > 0.2 and ρ2.1 > 0.12 (8)

θg < 15∘ and (Naw + Nw) > 0 (9)

Here, Naw is the number of water pixels within the eight pixels surrounding the tentative fire 

pixel, and θg is the angle between vectors pointing in the surface-to-satellite and specular 

reflection directions (Giglio et al., 2003). Note that test (9) effectively renders the detection 

of offshore gas flares impossible in the presence of sun glint.

3.6.2. Desert boundary rejection—As discussed by Giglio et al. (2003), the somewhat 

arbitrary background-fire rejection thresholds employed in the background characterization 

phase of the algorithm can sometimes produce false alarms in the proximity of surface 

features that produce a sharp radiometric transition. The specific thresholds used in the 

MODIS algorithm largely restrict this type of false alarm to the perimeter of hot, arid, and 

sparsely vegetated or barren regions most commonly associated with deserts. The desert 

boundary rejection test, which was introduced in Collection 4 to help eliminate such false 

alarms, remains unchanged for Collection 6. A detailed description of the test can be found 

in Section 2.2.7 of Giglio et al. (2003).

3.6.3. Land-pixel coastal rejection—When processing a potential fire pixel over land, 

unmasked water pixels within the background window can depress both T ̄4 and ΔT, 

potentially generating a false alarm (Giglio et al., 2003). The land-pixel coastal rejection 

test, which employs the 0.86- and 2.1-μm reflectance and Normalized Difference Vegetation 

Index (NDVI) of valid background pixels, is designed to prevent such false alarms. Although 

originally introduced to help compensate for significant errors that were present in the 

Collection 4 water mask, we have retained the test in Collection 6 since the distinction 

between land versus water pixels is inherently ambiguous along coastline. A complete 

description of the test can be found in Section 2.2.8 of Giglio et al. (2003).

3.6.4. Forest clearing rejection—As noted previously, Schroeder et al. (2008) 

demonstrated that the MODIS Collection 5 algorithm often misclassifies small (~1-km) 

tropical forest clearings as fires (Fig. 5). For Collection 6 we have therefore introduced a 

new rejection test to reduce the frequency of this type of commission error. A daytime fire 

pixel (land only) is rejected as a false alarm if T11>T̄11 + 3.7δ11, ρ̄0.86>0.28, and T4<325 K. 

The first of these three conditions exploits the fact that forest clearings tend to be 
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significantly warmer than the surrounding intact forest, while the second helps restrict the 

test to larger patches of tropical forest (which are bright in the near infrared) where a ~1-km 

clearing might be encountered. The third condition limits the test to fire pixels having a 

comparatively weak fire signature, which is a consistent property of this type of false alarm. 

Specific values for the thresholds used in each test were established using reference fire 

masks derived from 65 ASTER scenes acquired over the Brazilian Amazon that were set 

aside for training.

3.6.5. Water-pixel coastal rejection—Whereas contamination of the background 

window with unmasked water pixels can produce a false alarm over land (Section 3.6.3), a 

similar class of coastal false alarm can occur over water when the potential fire pixel itself is 

an unmasked land pixel. As a misidentified land pixel, both T4 and ΔT will be elevated 

relative to the (generally) cooler water background, to the point that the unmasked land pixel 

may resemble a small and/or low intensity fire. This scenario is most likely to arise in the 

vicinity of coastline, where the distinction between land and water pixels is inherently 

ambiguous. The presence of land or coast pixels in the background window is an obvious 

indicator for precisely this situation, thus we reject any tentative fire pixel detected over 

water for which NL+Nc>0 and test (1) is not satisfied. The additional stipulation with respect 

to test (1) disables the rejection test in the event the 4-μm signal blatantly exceeds a level 

that could reasonably be expected for a fire-free land pixel in close proximity to water.

3.7. Fire detection confidence

As with the Collection 4 and Collection 5 algorithms, a heuristic measure of the confidence 

(C) of each detected fire pixel is calculated as the geometric mean of up to five sub-

confidence parameters, designated C1 through C5. These parameters are defined in terms of 

T4, the number of adjacent water pixels (Naw), the number of adjacent cloud pixels (Nac), 

the standardized variables z4 = (T4 − T4)/δ4 and zΔT = (ΔT − ΔT)/δΔT, and the ramp function 

S(x;α,β), defined as

S(x; α, β) =
0; x ≤ α
(x − α)/(β − α); α < x < β
1; x ≥ β .

(10)

Note that our definition differs slightly from (Giglio et al., 2003) in that we have included a 

minor typographical correction in the bottom inequality. The sub-confidence parameters, 

which have been adjusted for Collection 6, are defined as follows for daytime fire pixels 

detected over land:

C1 = S(T4; T4
∗, 360 K) (11)
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C2 = S(z4; 3.0, 6) (12)

C3 = S(zΔT; 3.5, 6) (13)

C4 = 1 − S(Nac; 0, 4) (14)

C5 = 1 − S(Naw; 0, 4) (15)

For nighttime fire pixels, the threshold of 360 K used in the definition of C1 is reduced to 

320 K, and the sub-confidence parameters C4 and C5 are not included in the calculation of 

C. For daytime fire pixels detected over water, C5 is similarly excluded from the calculation 

since the presence of adjacent water pixels provides no more information about the quality 

of the fire detection than the fact that the fire pixel itself lies over water.

3.8. Retrieval of fire radiative power

For Collection 6, the original Kaufman et al. (1998)) empirical fire radiative power (FRP) 

retrieval has been replaced with the Wooster, Zhukov, and Oertel (2003), Wooster et al. 

(2012) approach, in which FRP is approximated as

FRP ≈
Apixσ
a τ4

(L4 − L4), (16)

where L4 is the 4-μmradianceof the fire pixel, L̄4 is the 4-μmbackground radiance (Section 

3.4), Apix is the area of the MODIS pixel (which varies as a function of scan angle), σ is the 

Stefan-Boltzmann constant (5.6704 × 10−8Wm−2 K−4), τ4 is the atmospheric transmittance 

of the 4-μm channel, and a is a sensor-specific empirical constant. For MODIS, a = 3.0 × 

10−9 W m−2 sr−1 μm−1 K−4 (Wooster et al., 2003) when radiance is expressed in units of W 

m−2 sr−1 μm−1. For the Level 2 (swath) fire product, τ4 is simply assigned a value of 1, but 

inclusion of a proper atmospheric correction into some of the higher-level MODIS fire 

products is under consideration.

The effect of this change in formulation for the Collection 6 product was to consistently 

decrease FRP for the vast majority of fire pixels (Fig. 6). For the much smaller fraction of 

comparatively high intensity fire pixels with FRP values that exceed ~500 MW, however, 

FRP occasionally increased by up to a few percent. The mean FRP of those fire pixels 
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detected in common was 56.9 MW for Collection 5 compared to 47.7 MW for Collection 6, 

corresponding to an average decrease of about 16%.

4. Validation

ASTER offers a unique perspective to validate the MOD14 product as it shares the EOS 

Terra platform with MODIS, providing coincident global imaging over individual 60 × 60 

km scenes acquired along a narrow near-nadir portion (± 8.55° in the ASTER short-wave 

infrared [SWIR] channels) of the 2300 km-wide MODIS swath. ASTER’s spatial data 

characteristics allow sub-pixel validation of MODIS binary fire/no-fire detection data, 

though are largely inadequate for FRP validation due to frequent pixel saturation (Giglio et 

al., 2008). Cost considerations compelled by the limited availability of quality reference data 

have constrained the validation of FRP retrievals to relatively small samples over select areas 

(e.g. Peterson & Wang, 2013; Schroeder, Oliva, Giglio, & Csiszar, 2014). Other studies built 

on satellite data inter-comparison analyses to provide additional insight on the consistency 

of FRP retrievals (e.g. Freeborn, Wooster, Roy, & Cochrane, 2014; Roberts, Wooster, Perry, 

& Drake, 2005). Because of the outstanding limitations described above, and given the 

relationship established between FRP retrievals using Collections 5 and 6 data in Section 

3.8, we focused on the validation of the fire detection data using the available ASTER 

reference data.

In order to ensure an unbiased and comprehensive global validation dataset to properly 

describe the fire detection performance of MOD14, we constructed an equidistant grid 

composed of approximately 640 cells, each 900 km in diameter (Fig. 7). The data search 

criteria sought to promote the largest possible range of observation conditions represented in 

our sample, while achieving reasonable data volume, computer requirements and human 

resources to effectively complete the analyses. The resulting scene selection process 

consisted of: [(i)]

i. Three temporal subsets, namely: 2001–2002, 2003–2004, and 2005–2006;

ii. Up to three scenes per temporal subset and grid cell showing highest fire activity 

based on the number of MOD14 fire pixels found within the individual ASTER 

scene coverage areas. These active fire scenes also included an abundance of 

fires omitted by the MOD14 product;

iii. At least one randomly-selected ASTER scene per each temporal subset and grid 

cell which could include other detected and undetected fires, water bodies, 

translucent as well as opaque clouds, snow/ice covered surfaces, a fire-free 

gradient of land surfaces, as well as nighttime data.

The sampling periods in (i) were constrained by data gaps affecting Terra 

MODIS prior to 2001, and by a sensor malfunction which marked the end of 

ASTER SWIR channel data acquisitions after May 2007. During our scene 

selection process, fire-free areas such as open ocean waters, deserts, and polar 

regions were automatically excluded. A subset of 2466 ASTER scenes (Fig. 7) 

matching the criteria above was obtained from NASA’s Land Processes 
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Distributed Active Archive Center (LPDAAC). Among those scenes selected, 

140 were acquired at night.

The 30-mASTER active fire reference data were derived based on the methodology of 

Giglio et al. (2008), and consisted of a binary fire/no-fire mask that was co-located with 

coincident Terra MODIS 1-km data (Csiszar & Schroeder, 2008; Csiszar et al., 2006; 

Morisette, Giglio, Csiszar, & Justice, 2005; Schroeder et al., 2008). The ASTER fire 

detection envelope calculated by Giglio et al. (2008) suggests a minimum detectable fire 

area of approximately 4 m2 for a typical 900-K flaming fire. Summary fire statistics were 

derived using the number of 30-m ASTER fire pixels overlapping the effective MODIS pixel 

footprint, after consideration of the sensor’s triangular point spread function in the along-

scan direction (Morisette et al., 2005; Schroeder, Csiszar, Giglio, & Schmidt, 2010; Wolfe et 

al., 2002).

Complementing the data described above, we obtained the corresponding Terra MODIS 

MOD03 geolocation product from the Land and Atmosphere Archive and Distribution 

System (LAADS), and the Hansen et al. (2003) MOD44B annual Vegetation Continuous 

Fields (VCF) gridded product from the LPDAAC. The MOD03 data were used to co-locate 

all MODIS pixels to the coincident ASTER reference data. The VCF data were used to 

generate average percentage tree cover estimates in and around each MODIS pixel location 

using a 20 × 20 km sampling window, providing broad land cover reference categories to 

support the global analysis of the MOD14 product performance.

5. Results and discussion

5.1. Global performance

Omission errors were estimated for the entire population using error matrix analysis. In 

order to estimate the omission error rate as a function of fire size, false negatives were 

derived as the sum of Terra MODIS pixels showing a number of coincident ASTER fire 

pixels ≥ N without corresponding MOD14 detection, with N varying between 1 and 500. 

The results were then stratified as a function of percentage tree cover as depicted in Fig. 8. 

Lower tree cover values (0–20%) were typically associated with grasslands and open 

savanna, whereas the highest values (>60%) were normally attributed to fires in densely 

vegetated forest areas. Fires in high tree cover areas were predominantly associated with 

forest wildfires (e.g., boreal regions) and slash and burn fires (e.g., tropical deforestation) 

without canopy obstruction. Understory fires in forest areas could not be properly quantified 

due to low detection rates in both reference and MOD14 data sets.

The overall omission error using fires of all sizes detected by ASTER, which can potentially 

be as small as 4 m2 in extent (Giglio et al., 2008), was 86.2%, and less than 10% for 

reference fires composed of 140 or more ASTER fire pixels. On average, areas of low 

(<20%) and high (>60%) percentage tree cover showed a 9% absolute difference in omission 

errors over fire clusters containing less than 100 ASTER pixels. This difference was 

attributed to lower fire intensity and warmer background conditions increasing the likelihood 

of MOD14 omission errors in low tree cover areas. Conversely, higher fire intensity and 
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cooler background conditions reduce the likelihood of a MOD14 omission error in areas of 

high tree cover.

From Fig. 8 it is apparent that the omission error stabilizes at ~5% for MODIS pixels 

containing more than ~250 ASTER fire pixels, and remains essentially fixed at this level as 

fire size continues to increase. We attribute this stabilization to common factors associated 

with large fires in general. The presence of large burn scars adjacent to the active fire line, 

for example, can affect the background characterization, potentially reducing the spatial 

and/or radiometric contrast with the fire pixel and thus the efficacy of the contextual tests. 

Variable plume and atmospheric properties can also lead to partial or complete obscuration 

of the fire signal, thereby affecting the ability of the algorithm to detect some parts of a large 

fire.

For comparative purposes, Fig. 8 also shows the corresponding omission error curves 

derived for the MOD14 Collection 5 product. Relative to the previous product version, 

MOD14 Collection 6 showed noticeable improvement in detection performance of large fire 

clusters (>300 ASTER pixels) occurring in areas with percentage tree cover greater than 

60%. The difference was mainly associated with MODIS pixels in boreal forest regions 

where thick smoke from large wildfires either exceeded the lower 0.86-μmpotential fire 

threshold used for Collection 5, or triggered the more liberal Collection 5 cloud screening, 

leading to higher omission errors.

Commission errors (false alarms) were defined as MOD14 pixels without coincident ASTER 

reference fire activity. All potential false alarms were visually inspected, and MOD14 pixels 

showing ASTER fire activity in the immediate vicinity (neighboring pixels) were classified 

as true positives in order to account for any unresolved pixel spatial response and/or co-

location errors. Additionally, MOD14 pixels associated with industrial heat sources (e.g., 

steel mills) were not counted as commission errors given that those recurring pixels can be 

readily isolated from the rest using simple detection persistence analysis (e.g., Schroeder et 

al., 2008). Finally, all confirmed false alarms were inspected for the presence of 

radiometrically distinct burn scars in order to separate false alarms in areas completely free 

of biomass burning from those associated with recent activity.

Fig. 9 shows the global commission-error rates for MOD14 Collections 5 and 6. False alarm 

rates were divided into two subsets describing pixels with and without coincident burn scars. 

Both data sets showed a strong dependency on the percentage tree cover, with higher false 

alarm rates in areas dominated by dense woody vegetation. This feature is corroborated by 

previous results and is explained by the occurrence of land clearings that induce high 

thermal contrast with the cooler forest background, thereby mimicking the spectral signature 

of an actual vegetation fire (Schroeder et al., 2008). Most importantly, the MOD14 

Collection 6 product showed a significant reduction in false alarm rates compared to 

Collection 5 over high tree cover regions. This improvement in performance is a result of the 

forest clearing rejection test described in Section 3.6.4. Overall, the MOD14 Collection 6 

daytime global commission error was 1.2%, compared to 2.4% in Collection 5. We found no 

evidence of commission errors in the nighttime data analyzed, which included 838 MOD14 

fire pixels among ~500,000 MODIS night pixels sampled. We therefore conclude that false 
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alarms in the MOD14 data are constrained to daytime data when differential solar reflection 

and heating can sometimes lead to ambiguous classification of land surface pixels.

5.2. Regional performance

To assess algorithm performance regionally, we partitioned our validation results into the 14 

Global Fire Emissions Database (GFED) regions used in numerous earlier studies (Fig. 10). 

As before, we consider both omission and commission errors, now expressing the former in 

terms of the complementary probability of detection widely used in earlier fire-product 

validation studies (e.g. Morisette et al., 2005, Schroeder et al., 2008).

Collection 6 detection probabilities showed significant regional variability, ranging from a 

minimum of 7% in the Middle East (MIDE) to a maximum of 26% in Australia and New 

Zealand (AUST). Compared to Collection 5, the probability of detection for the Collection 6 

product exhibited a ~3% absolute increase in Boreal North America and Boreal Asia, a ~1% 

absolute increase in Equatorial Asia and Central Asia, a ~1% absolute decrease in NH South 

America, and little or no change in the remaining nine regions.

Not unexpectedly, the observed variability in the probability of detection was strongly driven 

by regional differences in fire size (Fig. 11). For all regions, fire size (in terms of 30-m 

ASTER fire pixels) was extremely skewed toward small fires, more or less following an 

exponential distribution (Fig. 12). The presence of a comparatively small number of very 

large fires in the tail of each distribution generally renders the arithmetic mean highly biased 

toward large fires, to a great extent ignoring the contribution of the much larger population 

of small fires, hence we summarize the “typical” fire size within each region in terms of the 

median.

Regional commission error rates are shown in Fig. 13. For the Collection 6 product, 

significant absolute decreases of ~5% occurred in both Equatorial Asia and SH South 

America. More modest reductions (~1% absolute) were observed for Central Asia, NH 

South America, and Temperate North America, and in the remaining cases the Collection 6 

commission error rate remained effectively the same or increased only negligibly.

6. Conclusions

We have described improvements in the MODIS active fire detection algorithm, and the 

associated MOD14 and MYD14 fire products, as part of the MODIS Collection 6 land-

product reprocessing activity. The Collection 6 algorithm is intended to address limitations 

observed with the previous Collection 5 fire product, notably the occurrence of false alarms 

arising from small forest clearings, and the omission of large fires obscured by thick smoke. 

Processing was expanded to oceans and other large water bodies to facilitate monitoring of 

offshore gas flaring. Additionally, fire radiative power is now retrieved using the Wooster et 

al. (2003, 2012) radiance approach. This change resulted in a consistent decrease in FRP for 

the vast majority of fire pixels, but with occasional slight increases (by up to a few percent) 

for the much smaller fraction of comparatively high intensity fire pixels.
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We performed a Stage-3 validation of the Collection 5 and Collection 6 Terra MODIS fire 

products using reference fire maps derived from more than 2500 high-resolution ASTER 

images. Our results indicated targeted improvements in the performance of the Collection 6 

active fire detection algorithm compared to Collection 5, with reduced omission errors (i.e., 

an increased probability of detection) over large fires, and reduced false alarm rates in 

tropical ecosystems. Overall, the MOD14 Collection 6 daytime global commission error was 

1.2%, compared to 2.4% in Collection 5. Broken down regionally, the probability of 

detection for the Collection 6 product exhibited a ~3% absolute increase in Boreal North 

America and Boreal Asia, a ~1% absolute increase in Equatorial Asia and Central Asia, a 

~1% absolute decrease in NH South America, and little or no change in the remaining nine 

GFED regions. Not unexpectedly, the observed variability in the probability of detection was 

strongly driven by regional differences in fire size. Overall, there was a net positive change 

in Collection 6 algorithm performance globally.

The Collection 6 algorithm is now run as part of the MODIS land-product forward 

processing stream, as well as the operational Land Atmosphere Near Real-time Capability 

for EOS (LANCE) system. The entire MODIS archive has been reprocessed and is now 

freely available from the USGS/NASA Land Processes Distributed Active Archive Center 

(https://lpdaac.usgs.gov/). As we have noted previously, operation of the Terra MODIS 

sensor from launch through October 2000 was problematic, rendering the MODIS fire 

product for this time period of limited utility. Consequently, time series analyses of MODIS 

fire data should be restricted to observations acquired from November 2000 onward.

The MODIS Collection 6 algorithm and product has also been used as the baseline for the 

forthcoming science-quality Suomi National Polar-orbiting Partnership (S-NPP) Visible 

Infrared Imaging Radiometer Suite (VIIRS) 750-mactive fire product to be produced by 

NASA (Csiszar et al., 2014).
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Fig. 1. 
Flowchart of Collection 6 detection algorithm, with possible output classes signified by 

italicized text. Grey boxes indicate algorithm steps performed for both daytime and 

nighttime pixels, while yellow boxes show steps restricted to daytime pixels. The individual 

rejection tests described in Section 3.6 are shown inside the dashed box; those tentative fire 

pixels failing any rejection test are summarily classified as non-fire. Failure of the threshold 

tests (center box) applied to potential fire pixels will produce an output class of non-fire, or 

in those very rare cases when background characterization was not possible, unknown.
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Fig. 2. 
Locations of all Collection 6 Terra and Aqua MODIS fire pixels detected over water during 

January 2007.
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Fig. 3. 

Distribution of Collection 6 dynamic potential fire thresholds T4
∗ (top panel) and ΔT* 

(bottom panel) used for the Terra MODIS granule acquired on 5 March 2003 at 14:15 UTC 

over South America. For this daytime granule, 77% of land pixels had a 4-μm potential-fire 

brightness temperature threshold ( T4
∗) below the 310 K fixed threshold (red dashed line in 

top panel) used in the Collection 5 algorithm, and nearly all land pixels had a brightness-

temperature difference threshold (ΔT*) above the 10-K fixed threshold (red dashed line in 

bottom panel) used in Collection 5.
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Fig. 4. 
Example of smoke-obscured fire fronts mapped in the Collection 5 (lower left) and 

Collection 6 (lower right)MODIS fire product for the 5-min Aqua granule acquired over 

northern Russia on 22 July 2014 at 05:20 UTC. In both bottom panels, fire pixels are shown 

in red, water pixels in light blue, and non-fire land pixels in light grey. The edges of the 

MODIS swath from which this example was extracted are outlined in blue in the top left 

panel, with the smaller shaded rectangular region indicating the subset of the swath shown in 

the remaining panels. The upper right panel shows a false-color composite of the same 

subset generated from MODIS bands 7, 2, and 1. In this representation, active flaming fronts 

have a pale red color, smoke appears pale blue, vegetation appears green, and recently 

burned areas appear dark grey. The size of the off-nadir swath subset shown in the top right 

and bottom panels is approximately 426 km in the along-scan (horizontal) direction and 226 

km in the along-track (vertical) direction.
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Fig. 5. 
False color ASTER image of forest clearings in Pará, Brazil, acquired on 19 August 2005 at 

13:59 UTC illustrating false alarms in the Collection 5 product, with ASTER bands 8 (2.33 

μm) shown as red, 3 N (0.82 μm) shown as green, and 1 (0.56 μm) shown as blue. The 

approximate edges of the 1-km Terra MODIS pixels are outlined in black, with the two 

pixels incorrectly flagged as encompassing fires outlined in white. Neither false fire pixel 

appears in the Collection 6 product. The center of this scene is located at 6.489°S, 

52.716°W.
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Fig. 6. 
Collection 6 (C6) versus Collection 5 (C5) fire radiative power (FRP) for approximately 

240,000 Terra and Aqua MODIS fire pixels detected globally from 1 to 10 August 2005. The 

color scale indicates the number of points within each element of a 200 × 200 grid that 

partitions the two-dimensional space bounded by the axes.
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Fig. 7. 
Global equidistant 900 km resolution sampling grid and the distribution of individual 60 × 

60 km ASTER reference scenes (red shade) used to validate the near-nadir 1-km Terra 

MODIS fire product.
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Fig. 8. 
Overall omission error rates for MOD14 Collection 5 (top) and Collection 6 (bottom) 

products (black curves), and partitioned by percentage tree cover (TC). Note the nonlinear 

vertical axes.
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Fig. 9. 
False alarm rates derived for MOD14 Collections 5 (orange) and 6 (blue) as a function of 

fractional tree cover. False alarm rates are divided into pixels with and without associated 

burn scars.
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Fig. 10. 
Map of the 14 GFED regions, after Giglio et al. (2010).
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Fig. 11. 
Regional detection probabilities for MOD14 Collection 5 (orange dots) and Collection 6 

(blue dots) as a function of the median number of 30-m ASTER fire pixels within a 1-km 

MODIS pixel.
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Fig. 12. 
Representative distribution of fire sizes as determined with ASTER, i.e., the number of 30-

mASTER fire pixels within a 1-km MODIS pixel, for the NH Africa region. For clarity, the 

plot truncates the distribution at just over 100 ASTER fire pixels; in actuality the right tail of 

the distribution extends well beyond 1000 ASTER fire pixels due to a handful of extreme 

cases. The dashed vertical line marks the location of the median of the distribution.
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Fig. 13. 
Regional commission error (false alarm) rates for MOD14 Collection 5 (orange dots) and 

Collection 6 (blue dots).
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Giglio et al. Page 32

Table 1

Summary of MODIS channels used in the detection algorithm and ingested from the Collection 6 MODIS 

Level-1B radiance product (MOD021KM/MYD021KM). Details regarding the blending of bands 21 and 22 

may be found in Giglio, Descloitres, Justice, and Kaufman (2003).

Channel number Central wavelength (μm) Purpose

1 0.65 Sun glint and coastal false alarm rejection; cloud masking.

2 0.86 Bright surface, sun glint, and coastal false alarm rejection; cloud masking.

7 2.1 Sun glint and coastal false alarm rejection.

21 4.0 High-range channel for active fire detection.

22 4.0 Low-range channel for active fire detection.

31 11.0 Active fire detection, cloud masking, forest clearing rejection.

32 12.0 Cloud masking.

Remote Sens Environ. Author manuscript; available in PMC 2018 August 27.



N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Giglio et al. Page 33

Table 2

Statistical quantities computed for contextual window. The acronym MAD denotes the mean absolute 

deviation. More detailed descriptions can be found in Giglio et al. (2003).

Variable Description

L̄4 Mean 4-μm radiance.

T̄4 Mean 4-μm brightness temperature.

T̄11
Mean 11-μm brightness temperature.

ΔT
Mean brightness temperature difference (≡T4−T11).

δ4 4-μm brightness temperature MAD.

δ11 11-μm brightness temperature MAD.

δΔT Brightness temperature difference MAD.

Nv Number of valid pixels within contextual window.

ρ̄0.86
Mean 0.86-μm reflectance (daytime pixels only).

T4′
Mean 4-μm brightness temperature of pixels rejected as background fires.

δ4′
4-μm brightness temperature MAD of pixels rejected as background fires.

Nf Number of pixels within contextual window rejected as background fires.

Nc Number of coast pixels (always excluded) within the contextual window.

Nw Number of excluded water pixels within the contextual window.

NL Number of excluded land pixels within the contextual window.
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