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Supporting Information Text

Data sets

We have 10 real-world data sets from 9 cities: New York City (confined to the burough of Manhattan), Chicago, Vienna,
San Francisco, Singapore, Beijing, Changsha, Hangszhou, and Shanghai. We had two independent data sets for Shanghai,
independent in the sense they occurred on different years (2014 and 2015). For 2015 data set, we selected only those trips
starting and ending in the subcity “Yangpu”, and hereafter consider it a separate city. The data sets were collected from various
sources. Those from Beijing, Changsha, and Hangszhou were provided by a third-party organization that collected driving data
from taxi operation companies. The Shanghai data sets were provided by the “1st Shanghai Open Data Apps 2015” (an annual
competition). The New York data set has been obtained from the New York Taxi and Limousine Commission for the year 2011
via a Freedom of Information Act request. The Vienna and Singapore data sets were provided to the MIT SENSEable City
Lab by AIT and the Singapore government, respectively. The San Francisco and Chicago data sets were publicly available (9),
(10). Note the NYC, Vienna, San Francisco, and Singapore data sets were the same as used in previous studies (1), (11).

The four data sets from Chinese cities were very large (∼ GB worth of data per day). For computational convenience, we
therefore subsampled these data sets – and not the data sets from the western cities – by selecting only those trips which
occurred in a 20 km box surrounding the city center. Our choices for the city center – which of course are arbitrary since
center centers do not have one precise location – have GPS coordinates (39.9059631, 116.3912480), (28.1979483, 112.9713300),
(30.2489634, 120.2052342), (31.2253441, 121.4888922). We got these points from OpenStreetMap; they were the default locations
returned when the city names were entered. A consequence of our subsampling is that we do not capture the polycentric
structure of the Chinese cities, which may bias our results. To investigate this potential bias, we fitted 〈C〉(NT ) against data
from the full Shanghai data set in Supplementary Figure S17. As seen, the good agreement between our model and data
persists, confirming that our subsampling method does not cause bias.

The temporal range of the data sets was not uniform. NYC was the most comprehensive, consisting of a year worth of
taxi trips in Manhattan. The remaining data sets were for one week. The sizes of the street networks of each city were also
different. We demonstrate this in Figures S6(a) and S7(a) by showing NS , the number of scannable segments, for each city
over the course of a week. As discussed in the main text, we use the qualifier ‘scannable’ in our definition of NS because
some segments are never traversed by taxis in our data sets and so are permanently out of reach of taxi-based sensing. Thus
NS < NS,total, where NS,total is the total number of street segments in the street network. Given that city boundaries are
ill-defined, a principled way to measure NS,total is difficult. Our strategy to approximate NS,total was to find the number
of nodes in the smallest street network which contained as a subset all the segments scanned at least once in our data sets.
Supplementary Table S1 shows results for NS,total and NS using this approach.

Each data set consists of a set of taxis trips. The representation of these trips differs by data set. For the Chinese cities, a
trip is the set of GPS coordinates of the taxi’s position as its serves its passenger. Since in our model we represent cities by
street networks, we convert the set of GPS coordinates to a trajectory Tr, defined in the main text as a sequence of street
segments Tr = (Si1 , Si2 , . . . ). We matched the taxi trajectories to OpenStreetMap (driving networks) following the idea
proposed in (12) which uses a Hidden Markov Model to find the most likely road path given a sequence of GPS points. The
HMM algorithm overcomes the potential mistakes raised by nearest road matching, and is robust when GPS points are sparse.

For the remaining data sets, each trip i is represented by a GPS coordinate of pickup location Oi and dropoff location Di
(as well as the pickup times and dropoff times). As for the Chinese cities, we snap these GPS coordinates to the nearest street
segments using OpenStreetMap. We do not however have details on the trajectory of each taxi – that is, on the intermediary
path taken by the taxi when brining the passenger from Oi to Di. So we need to approximate trajectories. We used two
methods for this, one sophisticated, one simple. The sophisticated method was for the Manhattan data set. Here, as was
done in (1), we generated 24 travel time matrices, one for each hour of the day. An element of the matrix (i, j) contains the
travel time from intersection i to intersection j. Given these matrices, for a particular starting time of the trip, you pick the
right matrix for travel time estimation, and compute the shortest time route between origin and destination; that gives an
estimation of the trajectory taken for the trip. For the remaining cities, we used the simple method of finding the weighted
shortest path between Oi and Di (where segments were weighted by their length). As shown in the main text, in spite of the
different representations of trajectories, the sensing properties of the taxi fleets from each city are very similar. This gives us
confidence in the accuracy of our ‘unsophisticated’ method.

Lastly, for five of the nine cities – the Chinese cities plus NYC — taxi trips are recorded with the ID of the taxi which
completed that trip. Hence for these ‘vehicle-level’ data sets we can calculate 〈C〉NV – the sensing potential of a fleet as a
function of the number of constituent vehicles NV directly. For the remaining cities, it is unknown which taxis completed which
trips. Hence for these ‘trip-level’ data sets, we can solve only for 〈C〉NT . Hence we hereafter divide our data sets into these two
categories – ‘vehicle-level’ and ‘trip-level’ – and use these terms throughout the paper. For the sake of comparison, we decided
to consider NYC and Yangpu part of the trip-level data sets. That way, three different representation of trajectories feature in
the trip levels data sets, giving more confidence in the results produced from those data sets.

Supplementary Table 1 summarizes the properties of the data sets.

Estimation of parameters from data sets.

There are three parameters in our model: pi, the segment popularities, B, the random distance (measured in segments) traveled
by a taxi randomly selected from V, and L, the random length of a taxis’ trajectory; recall B is needed for the vehicle-level

2 of 32 Kevin P O’Keeffe, Amin Anjomshoaa, Steven Strogatz, Paolo Santi, Carlo Ratti



data for which 〈C〉 depends on the number of vehicles NV , and L is needed for trip-level data for which 〈C〉 depends on the
number of trips NT . Supplementary Figures S4 and S5 show the distributions P(L) and P(B) for each city on a given day.
L can be estimated from our data, but B cannot. This is because our data sets contain taxi trips only – a trip implying a
passenger is on board – and do not include the distance traveled by taxis when they are empty. Hence, estimating B from our
data sets constitutes a lower bound for the true B.

Coming back to Supplementary Figures S4 and S5, we see the distributions P(L) and P(B) are well fit by lognormals
(shown as red curves in the figures). The lognormal fits well in all cases, with exceptions being Chicago, and to a lesser extent,
San Francisco (which is contrast to the others appears to be monotonically decreasing). The distribution of taxi trajectory
lengths have been studied before (17, 18). Notice however that these works measure a trajectory length in physical distance
(i.e. kilometers), whereas our L measures distance in number of segments; that is, L simply counts the number of segments
traversed by the taxi during the trip and is blind to the segment lengths. This definition of L was appropriate for our analysis
for which we measured the sensing power in terms of numbers of segments covered C(NV ) = (NS)−1∑

j
1Mi>1, and not the

total length of road segments covered. Thus, our motivation for estimating L from data was that we needed it to compute the
sensing power 〈C〉(NV ), and not to study L in and of itself.

Supplementary Figures S6 and S7 shows the parameters of our model and other aspects of our data sets do not vary much
on different days of the week (α characterizes the distribution of the segment popularities pi as will discuss shortly). The low
variations in these quantities are encouraging findings because they indicate the behavior of our model (which depends on
these quantities) is general, and will not vary significantly on different days of the week.

Consistent with previous findings (13), the segment popularities pi are long-tailed and appear to be universal, approximately
following Zipf’s law. To test for universality in pi we fit each data set to the following heavy tailed distributions

Pexponential(x) = λe−λ(x−xmin)

Ppower law(x) = (α− 1)xα−1
minx

−α

Plog normal(x) = x−1 exp(− (log x− µ)2

2σ2 )

Pstretched exponential(x) = βλxβ−1e−λ(xβ−xβ
min

)

Ptruncated powerlaw(x) = λ1−α

Γ(1− α, λxmin)x
−αe−λx. [1]

We performed the fitting using the python package ‘powerlaw’. By default this package determines a minimum value pmin
below which data are discarded. Since we want to model the full P(p) (and not just the tail), we set this equal to the minimum
value in our data sets. Table 2 shows the results of the fittings. For each city either a truncated power law or stretched
exponential was selected as the distribution of best fit. Thus, we only report the best-fit parameters for those two distributions
(the parameters are defined by Eq. Eq. (1)). As detailed in documentation of ‘powerlaw’, parameters of best fit are found
by maximum liklihood estimation. We estimated errors in these parameters by bootstrapping: new data sets (p∗i )

NS
i∗=1 were

drawn uniformly at random from the original data set (pi)Nsi=1 1000 times, best fit parameters were found for each of these 1000
realizations, the standard deviation of which was taken as the standard error in each parameter. The ‘goodness of fit’ measure
for each distribution is quantified by the KS (kolmogorov-smirnoff) parameter D, defined by

D = max
x

∣∣∣CDFempirical(x)− CDFtheoretical(x)
∣∣∣ [2]

where smaller D values indicate better fits, and where CDF denotes the cumulative density function. Finally, the likelihood-ratio
test was used to compare the distribution of one fit to another. This has two parameters Λ, r. The sign of Λ tells which
distribution is more likely to have generated the data (positive means the first, negative means the second), while the r-value
gives a measure of the confidence in the value of Λ (the smaller, the more confident). We adopt the convention that Λ > 0
indicates the stretched exponential is preferred over the truncated power law (and Λ < 0 indicates the opposite).

As can be seen in Supplementary Table 2, the tests tell us P(p) of three of cities are best modeled by stretched exponentials,
while the others are best modeled by truncated power laws. The values for r were all < O(10−26) (and as small as O(10−222)),
so we truncated all values to zero. There are some mild similarities in the best fit parameters, but no evidence of a convincing
trend. Hence we conclude that while similar, the segment popularity distributions P(p) are not strictly universal.

Like P(L) and P(B), there is little daily variation in P(p). We demonstrate this in Supplementary Figure S6(b) and S7(b)
where we show the maximum likelihood exponent α of the truncated power law fit measured day-by-day (for clarity, we do not
display the β parameter of the stretched exponential, but they show the same trends).

Compare Cmodel and Cdata. In the main text we compare our expression for 〈C〉 against data for a given reference period
of a day. The empirical 〈C〉 were found by subsampling the data sets on a given day; random subsets were drawn from a day’s
worth of trips, and the average fraction of segments covered by those subsets was computed. As mentioned in the main text,
we tested the analytic prediction in two ways: using pi estimated by the stationary distributions of the taxi drive process
(dashed line), and also directly from our data sets (thick line). In the latter case we calculated the distribution of pi for each
day of the week (excluding Sunday), then used those to calculate six separate 〈C〉, the average of which is shown. This way,
both temporal fluctuations and the bias of using the same data sets to estimate pi and the empirical 〈C〉 (which recall was
calculated for a single day) was minimized. For both these cases, the parameter 〈B〉 was estimated from data sets.
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Scaling Collapse

We first discuss the vehicle-level data. In the main text we derived

〈C〉(NV ) = 1− 1
NS

NS∑
i=1

(1− pi)〈B〉∗NV . [3]

which contains the parameters pi, 〈B〉, and NS . Since pi and NS specify the distribution of P(p), and since the distribution
P(p) is approximately universal across cities (see Supplementary Figure S1), we only need to remove the parameter 〈B〉 from
Eq. (3) to make it city independent. Thus, we plot 〈C〉 versus NV /〈B〉 which gives the city-independent quantity

〈C〉(NV /〈B〉) = 1− 1
NS

NS∑
i=1

(1− pi)NV . [4]

Supplementary Figure S9 shows the fidelity of the collapse varies by day of week. Hangzhou varies the most. This is not
surprising, since as shown in Supplementary Figure S7, the Hangzhou data set has the highest temporal variation.

In Supplementary Figure S10 we apply the same procedure to the trip-level data, except now we plot 〈C〉 versus NT /〈L〉.
There no universal scaling collapse, although there are some similarities between the data sets, Chicago, Yangpu, and San
Francisco being nearly coincident. The lack of full universal behavior is perhaps due to the inferior quality of the trip-level
data sets (recall the trip-level data are inferior because the trajectories are inferred for those data sets).

Sensing power figures

We here give explicit values for N∗T and N∗V , the numbers of trips and vehicles needed to cover half of the city’s scannable
street segments, i.e. the solutions to 〈C〉(N∗T ) = 0.5 and 〈C〉(N∗V ) = 0.5. We also report the numbers needed to cover 80%,
which we define as N∗∗T and N∗∗V .

As previously discussed, while we consider Manhattan part of the trip-level data sets, taxi trips are recorded along with
taxi IDs. This means we can find N∗V for this data set (as opposed to only N∗T ). Supplementary Figure S11 shows N∗V = 30 –
just 30 random taxis cover half of the street segments. (Note in contrast to the rest of our work, the y-axis in Supplementary
Figure S11 expresses the number of segments covered as a percentage of total number of segments NS,total and not the number
of scannable street segments NS .) Even more remarkably, over one third of the street segments NS are scanned by just ten
random taxis, and tell us the sensing power of New York taxis is very large.

Minimum street sampling problem

In the main text we quantified the sensing power of a vehicle fleet by their covering fraction 〈C〉(NV ,m), the average number of
segments covered m times when NV randomly selected vehicles were equipped with a sensor. Notice that in this definition the
independent variable was the number of vehicles NV . In some contexts, it might be advantageous to know the reverse scenario,
in which the independent variable is C; that is, given a target coverage C̄, to know how many vehicles are needed to ensure
this target coverage is attained (with a given threshold probability guarantee p̄). We call this the “minimum street sampling”
problem. The minimum street sampling problem is similar in spirit to the classic “location set covering problems” from spatial
optimization (14, 15) where the goal is to distribute ‘facilities’ on a network such that the network is optimally covered. By
covered, we mean each node is within a certain distance of each facility. The difference between those works and ours is that
our ‘facilities’ are non-stationary: the sensor-bearing taxis move around on the network.

(MINIMUM STREET SAMPLING): Given a street network S, an reference period T , a minimum sampling requirement
m for each street segment, and a collection V of vehicles moving in S during T where vehicle trajectories are taken from P
according to a given probability distribution P; what is the minimum number N∗V of vehicles randomly selected from V such
that P(C(NV ,m) ≥ C̄) ≥ p̄, where 0 < C̄ ≤ 1 is the target street coverage and p̄ is a target probabilistic sampling guarantee?
The minimum street sampling problem is harder to solve that the ‘sensing potential of a fleet’ problem. This is because it
requires the survival function of the multinomial distribution PNT (M1 ≥ m1,M2 ≥ m2 . . . , ), which to our knowledge has no
known closed form. We here adapt a technique used in (8) to derive an excellent approximation to this survival function.

Approximation of survival function. The probability density function for the multinomial distribution is

PNB (M1 = m1,M2 = m2, . . . ) = NT !
m1! . . .mNS !

NS∏
k

p
mk
k [5]

where NB is the number of balls which have been dropped, NS is the number of bins, Mi is the random number of balls in bin
i, and pi is the probability of selecting bin i. We seek the survival function

PNB (M1 ≥ m1,M2 ≥ m2, . . . ). [6]
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The idea is to represent each Mi as an independent Poisson random variable, conditional on their sum being fixed (this is a well
known identity between the Multinomial and Poisson distributions). First let Ai be the event Xi ≥ mi, where Xi ∼ Poi(spi),
where s is a real number (we will explain its significance later). Using Bayes’ Theorem, we express the survival function as

PNB
(
A1, . . . , ANS |

NS∑
i=1

Xi = NB

)
= P(A1 . . . , ANS )

P(
∑NS

i=1 Xi = NB)
P
( NS∑
i=1

Xi = NB |A1, . . . , ANS

)
. [7]

The numerator in the first term is easily found, since the events Ai are independent Poisson random variables. Recalling
that if Xi ∼ Poi(λi) then P(Xi ≥ mi) = 1− Γ(mi, λi)/Γ(mi), where Γ(n, x) =

∫∞
x
tn−1e−tdt is the upper incomplete gamma

function, we find

P(A1 . . . , ANS ) =
NS∏
i=1

(
1− Γ(mi, spi)

Γ(mi)

)
. [8]

The denominator is also easy to find. Since Xi ∼ Poi(spi) and
∑

i
pi = 1, we see

∑
i
Xi ∼ Poi(s) (sums of Poisson random

variables are also Poisson distributed). Then

P
( NS∑
i=1

Xi = NB

)
= sNB e

−s

NB ! . [9]

For the second term in Eq. (7), we note that conditioning on the joint event A1, A2, . . . means the range of the summands are
constrained to [ai,∞]. Hence the summands, which we call Yi, are truncated Poisson random variables, which we denote by
Yi ∼ Poi[ai,∞](spi). We note that the mean of a truncated Poisson random variable is not the same as an untruncated one. In
particular, if Wi ∼ Poi[a,∞](λ), then

E(Wi) = λ
qa−1

qa
[10]

V ar(Wi) = λ2 qa−2qa − q2
a−1

q2
a

+ λ
qa−1

qa
[11]

where

qa =
{

1− Γ(a,λ)
Γ(a) a ≥ 1

0 a < 1.
[12]

Returning to the second term in Eq. (7), we find

P
( NS∑
i=1

Xi = NB |A1, . . . , ANS

)
= P
( NS∑
i=1

Xi = NB |A1, . . . , ANS

)
= P
( NS∑
i=1

Poi[ai,∞](spi) = NB

)
. [13]

We were unable to find an analytic form for the above sum. Instead, we used a first order normal approximation. This states
that for a sequence of random variables (Wi)i with mean µi and variance σ2

i ,

NS∑
i=1

Wi
d−→ N(sµ, sσ) [14]

as Ns →∞, where

sµ =
∑
i

µi [15]

s2
σ =

∑
i

σ2
i . [16]

Then the term becomes

P
( NS∑
i=1

Xi = NB |A1, . . . , ANS

)
= 1√

2πsσ
e
− (NB−sµ)2

2s2
σ . [17]

Pulling all this together gives

PNB (M1 ≥ m1,M2 ≥ m2, . . . ) ≈
NB !

sNT e−s
1√

2πsσ
e
− (NB−sµ)2

2s2
σ

NS∏
i=1

(
1− Γ(mi, spi)

Γ(mi)

)
. [18]
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Now, the variable s is a free parameter. Determining the optimal s is an open problem. Following (8) we use s = NT , which,
when inserted into Eq. (18), along with Stirling’s approximation NT !

N
NT
T

e−NT
≈
√

2πNT , yields our final expression

PNB (M1 ≥ m1,M2 ≥ m2, . . . ) ≈
√
NB
s2
σ
e
− (NB−sµ)2

2s2
σ

NS∏
i=1

(
1− Γ(mi, NBpi)

Γ(mi)

)
. [19]

To test the accuracy of the above approximation to the survival function we compared it to Monte Carlo estimates of this
survival function. Supplementary Figure S3 shows the approximation is excellent.

Solve minimum street sampling. We leverage the survival function Eq. (19) to solve the minimum street sampling problem
in the same way as we did to solve for C in the main text: we assume placing NT trajectories of random length L into NS bins
is the same as placing L ∗NT balls into NS bins,

P(NT ,L)(M1 ≥ m1, . . . ) =
∞∑
n=0

P(NT ,L=1)(M1 ≥ m1, . . . )P(SNT = n) [20]

where P(NT ,L=1)(M1 ≥ m1, . . . ) is given by equation Eq. (19). As for the expression for C, this can be extended to the vehicle
level by replacing L by B. Also as in the main text, this sum is well dominated by its average, leading to the simpler expression

P(NT ,L)(M1 ≥ m1, . . . ) = P(〈L〉∗NT ,L=1)(M1 ≥ m1, . . . ) [21]

=
√
〈L〉NT
s2
σ

e
− (NB−sµ)2

2s2
σ

NS∏
i=1

(
1− Γ(mi, 〈L〉NT pi)

Γ(mi)

)
. [22]

When full coverage C̄ = 1 is desired, equation Eq. (22) solves the minimum street sampling problem. However, when less
than full coverage C < 1 is desired, we must marginalize over all combinations of NS ∗ C segments above threshold. This
is because in our formulation of the minimum street sampling problem we require just a bare fraction C̄ of segments be
covered, which is achievable by a large number of combinations of segments. Of course if targeted coverage were desired (i.e
were specific street segments were desired to be senses with specific sensing requirements m), then Eq. (22) could be used.
Staying within our current formulation however, an enumeration of all CNS combinations of bins is required to marginalize
P(M1 ≥ m1, . . . ). For large NS enumerating these combinations is infeasible. To avoid this combintorial gallimaufry, we instead
estimate P(〈L〉∗NT ,L=1)(M1 ≥ m1, . . . ) by Monte Carlo; we draw samples of size 〈L〉 ∗NT from a multinomial distribution 1000
times, and count the fraction of times at least C̄ of the NS bins are above the threshold m. This lets us estimate P(C > C̄)(NT ),
from which we can read off the desired N∗T (P̄ ) solving the minimum street sampling problem.

Supplementary Figure S8 compares our predictions versus data for a target coverage of C̄ = 0.5. While the precise shapes of
the theoretical and empirical curves do not agree, our model correctly captures the right range of variation: the P (NT ) jumps
to P ≈ 1 at nearly the same NT . In particular, the error NT,model(P̄ ≈ 1) - NT,data(P̄ ≈ 1) is ≈ 200. Expressed relative to the
total number of trips, this is ∼ 10−4 for the NYC and Singapore data sets, and ∼ 10−2 for the other data sets which is good
accuracy.

Sensing power at finer temporal resolutions

Here we extend our analysis of the sensing power to include temporal resolutions finer than T = 1 day. We divide T into
Nw windows of equal size, and define the adjusted sensing power C∗(NT , Nw) as the normalized number of segments that are
covered at least once in each of the Nw windows. Let Mµ

i (NT ) be the number of times segment i is covered during window µ,
when NT trips have been randomly selected from P, where P is the population of trips that occur in T . As before, we derive
〈C∗〉 for the trip-level data first which is then easily generalized to the vehicle-level data. C∗ is given by

C∗(NT , Nw) = 1
NS

NS∑
j=1

1
(
Mµ=1
i ≥ 1,Mµ=2

i ≥ 1, . . . ,Mµ=Nw
i

)
. [23]

where 1 is the indicator variable. We approximate C∗ by adapting our ball-in-bin analysis. Instead of adding indistinguishable
balls into bins, we imagine balls come in Nw different colors (i.e. a different color for each time window Nw). We assume balls
of different colors have the same probability of being chosen to be put into bins. Computing C∗ then becomes equivalent to
asking how many NB balls need be drawn until NS ∗ C∗ bins have at least 1 ball of each color in them. Switching to numbers
of trips NT , which we recall is equivalent to adding a random number of balls (see methods section in the main text), the
probability of this event is

PNT (M1
i ≥, m̄, . . . ,MNw

i ≥ 1) [24]
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We assume that the events Mµ
i ≥ 1 are independent

PNT (M1
i ≥ 1, . . . ,MNw

i ≥ 1) =
Nw∏
µ=1

PNT (Mµ
i ≥ 1). [25]

Following our previous analysis we decompose the prodand

PNT (Mµ
i ≥ 1) =

∞∑
n

P(NT = n)× Pn(Mµ
i ≥ 1) [26]

which follows from the fact that trips have random length. Recall from the main text P(NT = n) ∼ Bin(NT , p). Also from the
main text, recall we assumed the sum in (26) is dominated by its average, so we collapse it and replace n by its average value
NT 〈L〉. Plugging this, along with the survival function for the binomial function, into the equation above gives

PNT (M1
i ≥ 1, . . . ,MNw

i ≥ 1) =
Nw∏
µ=1

1− (1− pµi )〈L〉NB/Nw . [27]

Finally, applying the expectation operator to Eq. (23), and plugging in the expression above gives

〈C∗〉(NT , Nw) = 1
NS

NS∑
i=1

PNT (M1
i ≥ 1, . . . ,MNw

i ≥ 1) [28]

= 1
NS

NS∑
i=1

Nw∏
µ=1

[
1− (1− pµi )〈L〉

NT
Nw

]
[29]

where pµi are the segment popularities resulting from all trips which occur in window µ; we assume the size of the windows is
large enough (or, equivalently, the number of windows Nw in low enough) so that the distribution of segment popularities pµi is
approximately stationary – an approximation that will get worse as Nw increases.

Supplementary Figure S12 shows 〈C∗〉(NT , Nw) for Nw = 3 and Nw = 10 along with the regular sensing power 〈C〉 for the
NYC data set. There is reasonable agreement between data and theory for Nw = 3, but this agreement gets worse when the
number of windows increases Nw = 10, as anticipated (in paragraph above). The figure also shows 〈C∗〉 decreases with increasing
temporal resolution, as measured by increasing Nw. In particular, when Nw = 3, which can be thought of as requiring segments
to be scanned in the morning, afternoon, and evening – defined by the intervals (12AM, 8AM), (8AM, 4PM), (4PM, 12AM) –
we see 〈C∗〉(ÑT , Nw) = 0.33 yields ÑT ≈ 4000. In terms of vehicles this translates to ÑV ≈ 100, compared to NV = 10 for the
regular sensing power – that is, 10 times more vehicles are needed to get the same coverage. Moreover, the equivalent ratio to
cover half of the segments is approximately 12. Nevertheless, NV = 100 to cover one-third of street segments still indicates a
large sensing power. Table S5 summarizes our results.

Finally, we note the vehicle-level expression 〈C∗〉(NV , Nw) is found by replacing NT → NB and 〈L〉 → 〈B〉 in Eq. (29) as
before.

Spatial bias of drive-by sensing

Taxi-based drive-by sensing has an inherent spatial bias because taxis do not spread out homogeneously over a city’s areas;
instead, taxis concentrate in the ‘core’ of a city: affluent, commercial, and touristic areas. This ‘core-scanning’ has both benefits
and drawbacks. The benefit is that core-scanning might be useful for certain sensing goals. For simplicity, we have thus far
assumed such goals were spatially uniform (mathematically expressed by Mi ≥ 1 for each i ). Certain urban quantities might
however have non-uniform sensing requirements Mi ≥ mi for some mi, owing to the quantities non-trivial spatiotemporal
character, as well as to the aims of the urban surveillant (certain areas might require greater monitoring than others). We
conjecture for some urban quantities, greater scanning is required at the core, since the core has higher rates of pollution and
increased infrastructural strain. For instance, if road quality were the urban metric being measured, it seems reasonable to
assume that the scanning requirement mi of a street segment would correlate with its usage (since the latter correlates with
its depreciation rate). In the language of our model, mi ∝ pi. Drive-by sensing is almost by definition the optimal choice of
sensing strategy for this sensing requirement, since again by definition, it scans segments in proportion to their popularity.

The drawback of drive-by sensing’s core-scanning is directly related to its preferential scan of the core; as such, it leaves
unpopular, potentially socioeconomically disadvantaged, areas monitored at significantly lower resolutions. This is a serious
concern, which could reinforce inequality and have other harmful consequences. In an effort to address the concern, we checked
how segment population pi correlate (spatially) with the median house-hold income wi. These wi were found from census data,
obtained using SimplyAnalytics (16). Only data for the American cities NYC, Chicago, and San Francisco were available, so
we restricted this part of our analyss to just these data sets. Census data was available for the same year as the taxi data for
NYC (2011) and Chicago (2014), but not for San Francisco; here the taxi data was from 2008, but the closest census data was
2010, so we used those data. Supplementary Figure S13 shows a spatial plot of the wi obtained from SimplyAnalytics and
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Supplementary Figure S14 shows scatter plots of (wi, pi); note, because the spatial granularity of the wi were lower than the pi,
multiple pi’s were mapped to a given wi. The correlation between pi and wi for each city were mild, with Pearson coefficients
rNYC = 0.31, rchicago = 0.22, rsanfran = −0.24. Strangely, San Francisco showed a negative correlation, which we suspect
means high income earners in San Francisco live outside of the city center. These low correlations are somewhat encouraging,
insofar as they speak to a low sensing-bias to affluent neighbourhoods. However, to be sure of this low-sensing-bias a more
detailed study is needed to corroborate our findings, which is a subject of future work.

We also visually inspected the drive-by sensing’s spatial bias. Supplementary Figure S18 shows the spatial distribution of
covered segments when NT = 10%, 75% for NYC, Chicago, and San Francisco where segments which have been covered are
colored green, and those uncovered are colored red. As can be seen, city centers are indeed preferentially covered (although in
Manhattan the cover is already quite homogeneous because it doesn’t have a city center, per se).

Inferring sensing power from street network

Could the sensing power of a taxi fleet be inferred from the street network S alone? That is, without data characterizing the
mobility pattern of the fleet M? In this note we explore this possibility. Beginning with the trip-level data, we see from the
expression

〈C〉NT = 1− 1
NS

∑
i

(1− pi)〈L〉NT [30]

that if pi and 〈L〉 could be inferred from S, then 〈C〉 could be inferred in turn. What network quantities could be used to infer
pi and 〈L〉 from S? We make the conjectures in Supplementary Table S6, that pi ≈ bi, where bi is the betweenness of node i,
and that 〈L〉 = 〈l〉, where 〈l〉 is the average path length of S. The pi = bi approximation is an intuitive: if taxi origin and
destinations are uniformly distributed, and taxis follow shortest paths, then by definition traffic densities on each edge (and
therefore segment popularities) will correspond to edge betweenness. Of course, real taxis do not have uniformly distributed
origin and destinations, and do not always follow shortest paths, so we do not expect pi = bi to hold exactly. But as a first
order approximation pi = bi seems reasonable. The 〈L〉 = 〈l〉 also follows from these assumptions; shortest paths implies L = l,
and uniformly distributed origin and destinations imply every path in the graph is sampled, implying 〈L〉 = 〈l〉.

Supplementary Figure S15 shows the probability density functions for pi and bi are reasonably similar. This similarity is not
surprising, since, recall, for some of our simulated trajectories, shortest paths length routing was used. In the caption of this
Figure we list 〈L〉 and 〈l〉 which are also similar. In Supplementary Figure S16 we plot the inferred sensing power 〈C̃〉, defined
by Eq. (30) with pi → bi and 〈L〉 → 〈l〉, versus the normal sensing power for the trip-level data. The figure shows the inference
is poor. Moreover, the bias between 〈C〉 and 〈C̃〉 is not uniform; for some data sets 〈C〉 > 〈C̃〉 and for others 〈C〉 < 〈C̃〉. We
do not compute 〈C̃〉 for the vehicle-level data for two reasons. First, inferring the means distance traveled (in segments) by
taxis 〈B〉 from street network quantities is difficult – how far a taxi travels in a day depends the driver’s preferences, as well as
the (varying) trip demand. Second, given the inference is so poor for the trip-level data, and given the trip-level data shows a
better match between theory and data for the sensing power, we expect the vehicle-level inference will be poor too.

We conclude that an accurate inference of the sensing power from the topology of the street network is unlikely.
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Fig. S1. Empirical segment popularities. Log-log plot of the distributions of segment popularities for each city, showing evidence of universality. See "Estimation of
parameters from data sets" section.
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Fig. S2. Taxi drive segment popularities versus data. Segment popularities pi derived from the taxi drive process (blue) and empirical data sets (orange) for all cities.
Simulations were run for 107 timesteps after which the distribution of pi were approximately stationary. To measure the similarity between the taxi-drive pi and empirical
pi we use the Kolmogorov-smirnov statistic D, defined as D = maxx |CDF1(x) − CDF2(x)| where CDFi(x) is the empirical cumulative density function for the
i-th data set. The D and bias parameter β (for the taxi-drive process) for each city were: (a) (D, β) = (1.8, 2.75) (b) (D, β) = (0.07, 1.5) (c) (D, β) = (0.1, 3)
(d) (D, β) = (0.8, 0.25) (e) (D, β) = (0.7, 0.25) (f) (D, β) = (0.9, 1.0) (g) (D, β) = (0.05, 1.0) (h) (D, β) = (0.07, 1.75) (i) (D, β) = (0.08, 1.25)
(j)(D, β) = (0.06, 0.75).
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Fig. S3. Approximation of multinomial survival function. Survival probability for multinomial distribution estimated from Eq. (19), and via Monte Carlo. 105 trials were
used in each Monte Carlo approximation. 50 bins were used, with pi = 1/50. The survival probability is defined as P(M1 > b,M2 > b, . . . ). Here we took b = 5. Note
the excellent agreement between theory and simulation (both curves lie on top of each other.)
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Fig. S4. Distributions of trajectories lengths for the trip-level data sets. Histograms of the trajectory lengths L during a given day for city. Red dotted lines show lognormal
curves of best fit. We list the parameters of best fit µ, σ, the sample mean 〈L〉, and the day the data were taken from for each subplot. Notice Chicago appears to have
two humps. Data taken from other days are qualitatively similar. It may be surprising that the L from different cities vary so much; one might expect the average distance
traveled by taxis would be the same everywhere. Recall however that L measures the raw number of segments in a taxi trip, and that we assume each segment to have unit
length. Hence, given that segments lengths might vary from city to city, we expect L to do so too. (a) Yangpu, 04/02/15, (µ, σ, 〈L〉) = (3.36, 0.52, 29.6) (b) NYC, 01/05/11,
(µ, σ, 〈L〉) = (3.37, 0.57, 30.8) (c) Chicago, 05/21/14, (µ, σ, 〈L〉) = (3.36, 0.98, 51.02) (d) Vienna, 03/25/11, (µ, σ, 〈L〉) = (3.91, 0.51, 45.54) (e) San Fransisco,
05/24/08, (µ, σ, 〈L〉) = (2.99, 0.87, 28.90) (f) Singapore, 02/16/11, (µ, σ, 〈L〉) = (3.97, 0.68, 60.78).
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Fig. S5. Distributions of distance traveled by taxis for vehicle-level data sets. Histograms of B, the distance traveled (measured in number of segments) by a taxi
in a day for each city. Red dotted lines show lognormal curves of best fit. We list the parameters of best fit µ, σ, the sample mean 〈B〉, and the day the data were
taken from for each subplot (a) Beijing 03/02/13, (µ, σ, 〈B〉) = (5.56, 0.65, 245) (b) Changsha 03/02/14 (µ, σ, 〈B〉) = (5.46, 0.31, 131) (c) Hangzshou 04/22/14
(µ, σ, 〈B〉) = (5.13, 0.18, 366) (d) Shanghai 03/02/14 (µ, σ, 〈B〉) = (5.41, 0.35, 270).
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Fig. S6. Temporal fluctuations of trip-level data sets. Generally speaking, there is little daily variation in each quantity. (a) Number of scannable street segments (b) Best fit
exponent in truncated power law α. (c) Average length of trajectory (d) Total number of trips.
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Fig. S7. Temporal fluctuations of vehicle-data. Generally speaking, there is little daily variation in each quantity. (a) Number of scannable street segments (b) Best fit
exponent in truncated power law α. (c) Average daily distance traveled by a taxi (measured in number of segments) (d) Number of active taxis.
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Fig. S8. Minimum street sampling problem. Analytic prediction versus trip-level data. The red curve shows theoretical results, while the black curve shows probabilities
estimated from data. The parameters for each subplot were C̄ = 0.5, m = 1. The number of trials used in the Monte Carlo estimate of P(C) was 1000. (a) Yangpu on
04/02/15 (b) NYC on 01/05/11 (c) Chicago on 05/21/14 (d) Vienna on 03/25/11 (e) San Fransisco on 05/24/08 (f) Singapore on 02/16/11.
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Fig. S9. Scaling collapse of vehicle-level data on different days. Counterpart of Figure 3 in the main text. As can be seen, a close approximation to a true scaling collapse
is achieved only on Tuesday. Note the Hangzhou data set has strong variations. This is not surprising, since as shown in Supplementary Figure S7, this data set has strong
temporal variations. In particular, 〈B〉 varies much more than the other data sets.
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Fig. S10. Scaling collapse of trip-level data. In contrast to vehicle-level data sets – Supplementary Figure S9 – the trip-level data sets do not show universal behavior. There
are however some trends. As can be seen the Chicago, San Francsico, and Yangpu data sets collapse to a common curve, where the other data sets do not. The data for each
city are the same as those used in Figure 2 (main text). Trip data on different days show the same trends.

18 of 32 Kevin P O’Keeffe, Amin Anjomshoaa, Steven Strogatz, Paolo Santi, Carlo Ratti



Fig. S11. Average segment coverage versus number of sensor-equipped taxis in Manhattan on 03/08/2011. Different colors show results for different scanning
thresholds. That is, the % of segments covered at least m times, where m = 1, 2, 3, 4. Black lines show one standard deviation away from mean value. Notice that just 10
vehicles scan more than a third of scannable segments, while 30 scan more than half. See "Sensing power figures" subsection.
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Fig. S12. Sensing power over finer temporal scale. The ‘regular’ sensing power 〈C〉 and adjusted sensing power C∗(NT , Nw) defined by Eq. (29) for Nw = 3 and
Nw = 10. Note that when Nw = 1 〈C〉 and 〈C∗〉 are equivalent. Thick black lines shows analytic predictions, while colored dots show empirical data. Each data point
represents the average of 500 trials. As can be seen, requiring segments be sensed at a finer temporal resolution – that is, at least once in each of the Nw windows –
significantly reduces their sensing power 〈C∗〉 < 〈C〉. Note also the agreement between data and theory also gets worse for Nw > 1; see "Sensing power at finer temporal
resolutions" section for a discussion on why this happens.
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Fig. S13. Manhattan census data. Computed from SimplyAnalytic (16). See "Spatial bias of drive-by sensing" section

Fig. S14. Spatial correlation of segment popularity and median household income. For each subfigure we list the number of wages brackets Nwages, the number
of scannable street segments NS , and the pearson correlation coefficient. See "Spatial bias of drive-by sensing" section for how the data were collected. (a) NYC:
(Nwages, NS , r) = (613, 6882, 0.31) (b) Chicago: (Nwages, NS , r) = (64, 10960, 0.22) (c) San Francisco: (Nwages, NS , r) = (27, 11573,−0.24).
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Fig. S15. Betweeness and segment popularities. Probability density functions of street network betweeness b and segment popularities p. The mean path length
〈l〉 of each graph, mean trip length 〈L〉, and Pearson correlation coefficient r, for each city are as follows. Note that the high correlation between pi and bi is to be
expected, since our trajectory generation method relies on shortest-path routing. (a) Yangpu (〈l〉, 〈L〉, r) = (24.2, 29.6, 0.90) (b) NYC (〈l〉, 〈L〉) = (34.3, 30.8, 0.65)
(c) Chicago (〈l〉, 〈L〉) = (51.0, 60.8, 0.95) (d) Vienna (〈l〉, 〈L〉, r) = (45.4, 60.9, 0.87) (e) San Fransisco (〈l〉, 〈L〉, r) = (28.88, 38.5, 0.92) (f) Singapore
(〈l〉, 〈L〉, r) = (60.8, 73.8, 0.87).
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Fig. S16. Inferred sensing power. See "Inferring sensing power from street network" section.
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Fig. S17. Polycentric city. To check if the subsampling of the Chinese data sets negatively biases our results, we fit our model to data derived from the full Shanghai data set.
As shown, our model still agrees well with data, thereby justifying our subsampling procedure; see "Datasets" section. Red dots show data, black thick line shows the model
prediction.
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Fig. S18. Spatial coverage at at different saturation levels. NYC, Chicago, and San Francisco are shown in the first, second, and third columns. The top row shows the
coverage when NT = 10%, and the bottom row shows the coverage when NT = 75% of trips. Covered segments are colored green, while uncovered segment are colored
red. As can be seen when NT is small (top row), predominantly segments in the city center are covered. When NT increases, areas outside of the city center become
covered. See "Spatial bias of drive-by sensing" section.
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City Trajectories Taxi Ids Temporal range NS,total NS
NS,total

NS

Yangpu Real (GPS) Yes 1 Week: 04/01/15 – 04/04/15 2919 2657 0.94
NYC Generated Yes 1 Year: 12/31/10 – 12/31/11 7954 7265 0.91
Chicago Generated No 1 Week: 06/23/14 – 06/30/14 24054 12492 0.52
Vienna Generated No 1 Week: 03/07/11 – 10/07/11 24054 15775 0.66
San Francisco Generated No 1 Week: 05/21/08 – 05/28/08 15453 11708 0.76
Singapore Generated No 1 Week: 02/21/11 – 02/28/11 32362 25255 0.78
Beijing Real (GPS) Yes 1 Week: 03/01/14 – 03/07/14 54665 27024 0.49
Changsha Real (GPS) Yes 1 Week: 03/01/14 – 03/07/14 18067 9882 0.55
Hangszhou Real (GPS) Yes 1 Week: 04/21/15 – 04/28/15 39056 16125 0.41
Shanghai Real (GPS) Yes 1 Week: 03/01/14 – 03/07/14 49899 21002 0.49

Table S1. Properties of data sets.
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Maximum liklihood parameters
(λ, β,D) stretched exponential (λ, α,D)trunc. power law (Λ, r)

Yangpu
(

(1.3± 0.1) ∗ 106, 0.266± 0.003, 0.08
)

(5830± 10, 1.132± 0.004, 0.07) (−1327, 0)

NYC
(

(15± 4) ∗ 103, 0.499± 0.005, 0.03
)

(780± 20, 1.00± 10−6, 0.25) (1600, 0)

Singapore
(

(591± 8) ∗ 103, 0.499± 0.004, 0.02
)

(3400± 200, 1± (6 ∗ 10−8), 0.2) (3282, 0)

Chicago
(

(3.4± 0.9) ∗ 106, 0.187± 0.005, 0.04
)

(650± 30, 1.170± 0.006, 0.03) (−208, 0)

San Francisco
(

(47± 7) ∗ 105, 0.257± 0.005, 0.03
)

(1330± 50, 1.156± 0.008, 0.04) (−218, 0)

Vienna
(

(41± 0.5) ∗ 105, 0.293± 0.006, 0.04
)

(2420± 80, 1.196± 0.008, 0.05) (−278, 0)

Beijing
(

(1.2± 0.4) ∗ 105, 0.42± 0.002, 0.06
)

(5940± 10, 1.00± 10−6, 0.08) (824, 0)

Changsha
(

(7.5± 0.2) ∗ 105, 0.34± 0.003, 0.04
)

(1750± 10, 1.02± 0.02, 0.04) (248, 0)

Hangzhou
(

(1.3± 0.2) ∗ 106, 0.23± 0.003, 0.05
)

(1770± 20, 1.16± 0.004, 0.04) (560, 0)

Shanghai
(

(7.8± 0.4) ∗ 105, 0.43± 0.004, 0.05
)

(4970± 10, 1.00± 10−6, 0.06) (564, 0)

Table S2. Maximum liklihood estimations of parameters.
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City N∗
T N∗∗

T NT,total N∗
T /NT,total N∗∗

T /NT,total Date

Yangpu 947 11716 17571 5 % 67 % 04/02/15
New York 1179 8007 466237 0.3 % 1.87 % 01/05/11
Chicago 2619 26110 67848 4 % 38 % 05/21/14
Vienna 1010 7552 10948 9 % 68 % 03/25/11
San fran 1923 13166 36089 5 % 36 % 05/24/08
Singapore 1782 14355 401879 0.44 % 4 % 02/16/11

Table S3. Coverage statistics. NT,total refers to the total number of trips occurring on the specified day.
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City N∗
V N∗∗

V NV,total N∗
V /NV,total N∗∗

V /NV,total Date

Beijing 211 1330 4000 5 % 33 % 03/01/14
Changsha 227 1516 4300 5 % 35 % 03/01/14
Hangzhou 132 1321 2500 5 % 52 % 04/21/15
Shanghai 148 1519 2800 5 % 54 % 03/01/14

Table S4. Coverage statistics. NV,total refers to the total number of taxis on the specified day.

Kevin P O’Keeffe, Amin Anjomshoaa, Steven Strogatz, Paolo Santi, Carlo Ratti 29 of 32



Table S5. Comparison of regular and adjusted sensing power for Manhattan data set

〈C〉 = 0.33 〈C∗〉(Nw = 3) = 0.33 〈C〉 = 0.5 〈C∗〉(Nw = 3) = 0.5

NT 400 4000 1179 14750
NV 10 100 30 355
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Mobility Pattern M Street network S

segment popularities pi edge betweenness bi
mean length of trip 〈L〉 mean path length 〈l〉
mean distance traveled by taxi 〈B〉 N/A

Table S6. Conjectured relationships between quantities from taxis mobility patterns M and quantities from the street network S on which the
taxis move.
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