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The assembly of long reads from Pacific Biosciences and Oxford Nanopore Technologies typically requires resource-inten-

sive error-correction and consensus-generation steps to obtain high-quality assemblies. We show that the error-correction

step can be omitted and that high-quality consensus sequences can be generated efficiently with a SIMD-accelerated, partial-

order alignment–based, stand-alone consensus module called Racon. Based on tests with PacBio and Oxford Nanopore data

sets, we show that Racon coupled with miniasm enables consensus genomes with similar or better quality than state-of-the-

art methods while being an order of magnitude faster.

[Supplemental material is available for this article.]

With the advent of long-read sequencing technologies from
Pacific Biosciences (PacBio) and Oxford Nanopore Technologies
(ONT), the ability to produce genome assemblies with high conti-
guity has received a significant fillip. However, to copewith the rel-
atively high error rates (>5%) of these technologies, assembly
pipelines have typically relied on resource-intensive error-correc-
tion (of reads) and consensus-generation (from the assembly) steps
(Chin et al. 2013; Loman et al. 2015).More recentmethods such as
FALCON (Chin et al. 2016) and Canu (Koren et al. 2017) have
refined this approach and have significantly improved runtimes
but are still computationally demanding for large genomes
(Sovic ́ et al. 2016a). Recently, Li (2016) showed that long errone-
ous reads can be assembledwithout the need for a time-consuming
error-correction step. The resulting assembler,miniasm, is an order
of magnitude faster than other long-read assemblers but produces
sequences that can havemore than 10 times asmany errors as oth-
er methods (Sovic ́ et al. 2016a). As fast and accurate long-read as-
semblers can enable a range of applications, from more routine
assembly ofmammalian and plant genomes to structural variation
detection, improvedmetagenomic classification, and even online,
“read until” assembly (Loose et al. 2016), a fast and accurate con-
sensus module is a critical need. This was also noted by Li
(2016), highlighting that fast assembly was only feasible if a con-
sensus module matching the speed of minimap and miniasm
was developed as well.

Here we address this need by providing a very fast consen-
sus module called Racon (for Rapid Consensus), which when
paired with a fast assembler such as miniasm, enables the effi-
cient construction of genome sequences with high accuracy
even without an error-correction step. Racon provides a stand-
alone, platform-independent consensus module for long and er-
roneous reads and can also be used as a fast and accurate read
correction tool.

Results

Racon is designed as a user-friendly stand-alone consensusmodule
that is not explicitly tied to any de novo assembly method or se-
quencing technology. It reads multiple input formats (GFA,
FASTA, FASTQ, SAM, MHAP, and PAF), allowing simple interoper-
ability and modular design of new pipelines. Even though other
stand-alone consensus modules, such as Quiver (Chin et al.
2013) and Nanopolish (Loman et al. 2015) exist, they require
sequencer-specific input and are intended to be applied after the
consensus phase of assembly to further polish the sequence.
Racon is run with sequencer-independent input (only uses base
quality values), is robust enough to work with uncorrected read
data, and is designed to rapidly generate high-quality consensus
sequences. These sequences can be further polished with Quiver
or Nanopolish or by applying Racon for more iterations.

Racon takes as input a set of raw backbone sequences, a set of
reads, and a set ofmappings between reads and backbone sequenc-
es. Mappings can be generated using any mapper/overlapper that
supports theMHAP, PAF, or SAMoutput formats, such asminimap
(Li 2016), MHAP (Berlin et al. 2015), or GraphMap (Sovic ́ et al.
2016b). In our tests, we used minimap as the mapper as it was
the fastest and provided reasonable results. Racon uses the map-
ping information to construct a partial-order alignment (POA)
graph, using a single instruction multiple data (SIMD) implemen-
tation to accelerate the process (SPOA). More details on Racon and
SPOA can be found in the Methods section.

For the purpose of evaluation, we paired Raconwithminimap
(as an overlapper) andminiasm to form a fast and accurate de novo
assembly pipeline (referred to here as miniasm+Racon for short).
Our complete pipeline is thus composed of four steps: (1)minimap
for overlap detection, (2) miniasm layout for generating raw con-
tigs, (3) minimap for mapping of raw reads to raw contigs, and
(4) Racon for generating high-quality consensus sequences. Steps
three and four can be run multiple times to achieve further itera-
tions of the consensus. We then compared the miniasm+Racon
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pipeline to other state-of-the-art de novo assembly tools for third-
generation sequencing data (i.e., FALCON and Canu). Note that
FALCON andCanu have previously been benchmarkedwith other
assembly methods such as PBcR and a pipeline from Loman et al.
(2015) and shown to produce high-quality assemblies with im-
proved running times (Sovic ́ et al. 2016a). Assembly pipelines
were evaluated in terms of consensus sequence quality (Table 1),
runtime and memory usage (Table 2; Fig. 1), and scalability with
respect to genome size (Fig. 2) on several PacBio and Oxford
Nanopore data sets (see Methods).

As canbe seen fromTable 1, all assemblypipelineswere able to
produce assemblies with high coverage of the reference genome
andina fewcontigs.Canu,FALCON,andtheminiasm+Raconpipe-

line also constructed sequenceswith comparable sequence identity
to the reference genome, with the iterative use of Racon serving as
apolishingstepforobtaininghighersequence identity. Inaddition,
the miniasm+Racon pipeline was found to be significantly faster
for all data sets, with a 5× to 301× speedup compared with Canu
and 9× to 218× speedup compared with FALCON (Fig. 1).

Racon’s speedup was more pronounced for larger genomes
and is likely explained by the observation that it scales linearly
with genome size (for fixed coverage) (Fig. 2).

The runtime of the miniasm+Racon pipeline was dominated
by the time for the consensus-generation step in Racon, highlight-
ing that this step is still the most compute intensive one for small
genomes (Table 3). However, the results in Table 3 suggest that for

Table 1. Assembly and consensus results across six data sets of varying genome length and sequencing data type

miniasm+Racon: one
iteration

miniasm+Racon: two
iterations Canu FALCON

Lambda ONT R7.3 30×
Ref. genome size (in bp) 48,502 48,502 48,502 48,502
Total bases (in bp) 47,916 47,872 25,077 7212
No. of ref. chromosomes 1 1 1 1
No. of contigs 1 1 1 1
Aln. bases ref. (in bp) 48,438 (99.87%) 48,434 (99.86%) 25,833 (53.26%) 7483 (15.43%)
Aln. bases query (in bp) 47,916 (100.00%) 47,872 (100.00%) 25,077 (100.00%) 7212 (100.00%)
Avg. identity 97.59 97.97 96.87 95.77

Escherichia coli K-12 ONT R7.3 54×
Ref. genome size (in bp) 4,641,652 4,641,652 4,641,652 4,641,652
Total bases (in bp) 4,637,173 4,632,058 4,601,503 4,580,230
No. of ref. chromosomes 1 1 1 1
No. of contigs 1 1 1 1
Aln. bases ref. (in bp) 4,640,867 (99.98%) 4,641,323 (99.99%) 4,631,173 (99.77%) 4,627,613 (99.70%)
Aln. bases query (in bp) 4,636,689 (99.99%) 4,632,055 (100.00%) 4,601,365 (100.00%) 4,580,230 (100.00%)
Avg. identity 99.13 99.32 99.28 98.84

Saccharomyces cerevisiae S288C
ONT R9 59×
Ref. genome size (in bp) 12,157,105 12,157,105 12,157,105 12,157,105
Total bases (in bp) 12,172,019 12,167,797 12,224,535 11,643,917
No. of ref. chromosomes 17 17 17 17
No. of contigs 42 42 45 41
Aln. bases ref. (in bp) 12,104,541 (99.57%) 12,110,095 (99.61%) 12,120,070 (99.70%) 11,885,904 (97.77%)
Aln. bases query (in bp) 12,108,082 (99.48%) 12,115,796 (99.57%) 12,196,684 (99.77%) 11,643,482 (100.00%)
Avg. identity 97.88 98.04 98.61 98.22

E. coli K-12 PacBio P6C4 160×
Ref. genome size (in bp) 4,641,652 4,641,652 4,641,652 4,641,652
Total bases (in bp) 4,653,199 4,645,508 4,664,416 4,666,788
No. of ref. chromosomes 1 1 1 1
No. of contigs 1 1 1 1
Aln. bases ref. (in bp) 4,641,501 (100.00%) 4,641,439 (100.00%) 4,641,652 (100.00%) 4,641,652 (100.00%)
Aln. bases query (in bp) 4,653,111 (100.00%) 4,645,508 (100.00%) 4,664,416 (100.00%) 4,666,788 (100.00%)
Avg. identity 99.63 99.90 99.99 99.90

S. cerevisiae W303 PacBio P4C2
127×
Ref. genome size (in bp) 12,157,105 12,157,105 12,157,105 12,157,105
Total bases (in bp) 12,071,278 12,051,573 12,402,332 12,003,077
No. of ref. chromosomes 17 17 17 17
No. of contigs 30 30 29 44
Aln. bases ref. (in bp) 12,023,607 (98.90%) 12,025,677 (98.92%) 12,127,627 (99.76%) 11,932,488 (98.15%)
Aln. bases query (in bp) 12,046,299 (99.79%) 12,027,338 (99.80%) 12,363,941 (99.69%) 11,910,549 (99.23%)
Avg. identity 99.43 99.72 99.86 99.70

Caenorhabditis elegans PacBio
P6C4 81×
Ref. genome size (in bp) 100,272,607 100,272,607 100,272,607 100,272,607
Total bases (in bp) 106,353,704 106,392,402 106,687,886 105,858,394
No. of ref. chromosomes 6 6 6 6
No. of contigs 77 77 134 242
Aln. bases ref. (in bp) 100,017,898 (99.75%) 99,979,140 (99.71%) 100,166,301 (99.89%) 99,295,695 (99.03%)
Aln. bases query (in bp) 101,711,974 (95.64%) 101,741,297 (95.63%) 102,928,910 (96.48%) 102,008,289 (96.36%)
Avg. identity 99.44 99.73 99.89 99.74

Vaser et al.

738 Genome Research
www.genome.org



larger genomes the mapping computation stage can catch up in
terms of resource usage. Furthermore, if a polishing stage is used,
this would typically be more resource intensive.

Comparisonof the results of thevariousassemblypipelines af-
ter a polishing stage confirmed that the use of Racon provided bet-
ter results than just the miniasm assembly (average identity of
99.80% vs. 98.06%) and that the miniasm+Racon assembly
matched the best reported sequence quality for this data set (from
theLomanet al. pipeline) (Sovic ́et al. 2016a),whileprovidingabet-
ter match to the actual size of the reference genome (4,641,652 bp)
(Table 4). We additionally observed that Nanopolish executed
more than 6× faster on miniasm+Racon contigs than on raw
miniasm assemblies (248.28 CPUh vs. 1561.80 CPUh), and the
miniasm+Racon+Nanopolish approach achieved the same se-
quence quality as the original Loman et al. pipeline, while being
much faster.

We also evaluated Racon’s use as an error-correction module.
The three main conceptual differences between error-correction
and consensus modes in Racon are that (1) instead of mapping
reads to a reference, overlapping of reads needs to be performed
(e.g., using minimap with overlap parameters instead of defaults);
(2) multiple overlaps are not filtered like mappings (when map-
ping, we only want to find one best mapping position); and (3)
the parallelization is not conducted on a per-window level, but

on a per-read level to reduce the system time; i.e., each read con-
sumes one thread. We noted that Racon–corrected reads had error
rates comparable to FALCON and Canu but provided better cover-
age of the genome (Table 5). Overall, Nanocorrect (Loman et al.
2015) had the best results in terms of error rate, but it had lower ref-
erence coverage and was more than two orders of magnitude
slower than Racon.

Finally, the default mode of Racon determines the consensus
by splicing results of nonoverlapping windows together. We addi-
tionally attempted to assess the influence of using overlapping
windows, where we extended each window by 10% on both of
its ends. Neighboring windows were then aligned and clipped
to form the final consensus sequence. By using this approach,
we re-evaluated the consensus quality (Supplemental Table S1),
the speed (Supplemental Table S2), and the quality of error correc-
tion (Supplemental Table S3) to the default Racon mode on all
data sets. When using the window overlapping mode, the consen-
sus quality increased (up to 0.06%) in all but one case. The most
significant increase was obtained on the E. coli PacBio data set,
where average identity rose from 99.90% to 99.94% This improve-
ment came at the expense of higher running time (≈10%–15%)
and an additional heuristic (window overlap length), which is
why we enabled this mode as a nondefault option within the
Racon module.

Recently, another stand-alone con-
sensus module called Sparc (Ye and Ma
2016) emerged. We evaluated Sparc in a
similar manner to Racon, with the only
difference being in the mapping step
(step 3 in the miniasm+Racon pipline)
where Sparc uses BLASR (Chaisson and
Tesler 2012). We named this pipeline
miniasm+Sparc accordingly. The results
of the comparison are shown in Table 6,
which contains consensus sequence
quality, runtime, and memory usage. It
can be seen that the consensus quality
of the miniasm+Sparc pipeline is consis-
tently lower than that of the miniasm
+Racon pipeline. In addition, miniasm
+Sparc is up to 10× slower on larger ge-
nomes. Also, we noticed that Sparc
crashedon somecontigs due tounknown
reasons.

Discussion

The principal contribution of this work
is to take the concept of fast, error-
correction-free, long-read assembly, as

Table 2. Time/memory consumption for all data sets

miniasm+Racon: one iteration miniasm+Racon: two iterations Canu FALCON

Lambda ONT 30× 0.12/<0.1 0.25/<0.1 2.86/1.90 2.29/0.854
E. coli K-12 ONT R7.3 54× 25/3.32 46/3.32 1328/4.03 829/12.29
S. cerevisiae S288C ONT R9 59× 28/7.84 44/7.84 13,243/4.88 9603/8.82
E. coli K-12 PacBio P6C4 160× 86/9.69 162/9.69 773/3.60 2908/9.93
S. cerevisiae W303 PacBio P4C2 127× 115/16.09 215/16.09 6375/3.65 14,808/4.78
C. elegans PacBio P6C4 81× 1247/50.38 2004/50.38 37,853/10.16 119,766/7.59

Results are presented in the following format: CPU time (in min)/Maximum memory (in GB).

Figure 1. Racon’s speedup compared with FALCON and Canu.
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embodied by the recently developed programminiasm, to its logi-
cal end. Miniasm is remarkably efficient and effective in taking er-
roneous long reads and producing contig sequences that are
structurally accurate (Sovic ́ et al. 2016a). However, assemblies
fromminiasm do not match up in terms of sequence quality com-
pared with the best assemblies that can be produced with existing
assemblers. This serves as a significant barrier for adopting this
“light-weight” approach to assembly, despite its attractiveness for
greater adoption of de novo assembly methods in genomics. In
thiswork,we showthat the sequencequalityof a correction-free as-
semblercanindeedbeefficientlyboosted toaqualitycomparable to
other resource-intensive, state-of-the-art assemblers. This makes
the tradeoff offeredmuchmore attractive, and the concept of a cor-
rection-free assemblermore practically useful. Racon is able to start
from uncorrected contigs and raw reads and still generate accurate

Figure 2. Scalability of Racon as a function of genome size. Read cover-
age was subsampled to be 81× (limited by the Caenorhabditis elegans data
set), and the figure shows results for one iteration of Racon.

Table 3. Resource usage for various parts of the miniasm+Racon assembly pipeline

Lambda ONT E. coli ONT S. cerevisiae ONT E. coli PacBio S. cerevisiae PacBio C. elegans PacBio

minimap overlap <0.1/<0.1 2.70/3.32 10.21/7.84 11.23/9.69 21.90/16.09 473.82/50.38
miniasm <0.1/<0.1 <0.1/<0.1 0.24/0.22 0.46/0.40 0.56/0.46 4.22/3.45
minimap mapping: first iteration <0.1/<0.1 0.24/0.24 0.83/0.27 0.65/0.23 1.48/0.26 13.82/1.06
Racon consensus: first iteration 0.11/<0.1 22.16/2.91 17.06/2.11 73.21/7.88 91.55/4.69 755.29/22.11
minimap mapping: second iteration <0.1/<0.1 0.27/0.23 0.89/0.30 0.72/0.24 1.63/0.27 15.15/0.96
Racon consensus: second iteration 0.13/<0.1 20.82/2.25 14.85/1.98 75.75/6.40 97.94/4.61 741.68/20.71
Total CPU time/maximum memory 0.25/<0.1 46/3.32 44/7.84 162/9.69 215/16.09 2004/50.38

Results are presented in the following format: CPU time (in min)/Maximum memory (in GB).

Table 4. Results after polishing assemblies with Nanopolish on the E. coli K-12 ONT R7.3 54× data set

Raw miniasm
miniasm+Racon: two

iterations Canu FALCON
Loman et al.

pipeline

Total bases (in bp) 4,696,482 4,641,756 4,631,443 4,624,811 4,695,512
|Total bases−Genome size|

(in bp)
54,830 104 10,209 16,841 53,860

Aligned bases ref. (in bp) 4,635,941 (99.88%) 4,641,312 (99.99%) 4,633,324 (99.82%) 4,627,571 (99.70%) 4,641,325 (99.99%)
Aligned bases query (in bp) 4,687,686 (99.81%) 4,641,756 (100.00%) 4,631,361 (100.00%) 4,624,811 (100.00%) 4,695,463 (100.00%)
Average identity 98.06 99.80 99.80 99.78 99.80

Table 5. Comparison of error-correction modules on E. coli K-12 ONTR7.3 54× data set

CPU time (in
h) Coverage

Insertion rate
(%)

Deletion rate
(%)

Mismatch rate
(%)

Match rate
(%)

Error rate (I+D+M)
(%)

Raw — 53.55× 5.23 2.83 4.89 89.81 12.95
Racon 10 50.23× 0.52 0.58 0.23 99.25 1.33
Nanocorrect 8100 44.74× 0.14 0.43 0.03 99.83 0.60
FALCON 22 46.95× 0.04 1.11 0.06 99.90 1.21
Canu 5 35.53× 0.06 1.25 0.08 99.85 1.39

Values presented in the table are median values of the error and match rate estimates.
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sequences efficiently because it exploits the development of a
SIMD version of the robust POA framework. This makes the ap-
proach scalable to large genomes and general enough to work
withdata fromverydifferent sequencing technologies.With the in-
creasing interest in the development of better third-generation as-
sembly pipelines, we believe that Racon can serve as useful plug-
in consensus module that enables software reuse and modular
design.

We would also like to note that while miniasm is a very fast
tool that produces correct genome structures, its current imple-
mentation is not optimized for long repetitive genomes (Li
2016). Miniasm loads all overlaps into RAM, which might cause
crashes due to insufficient memory resources. Although the focus
of this study is on the miniasm+Racon pipeline, Racon is designed
as a general purpose consesus module that can be coupled with
other assembly pipelines as a consensus or polishing step.

Methods

Racon is based on the Partial Order Alignment (POA) graph ap-
proach (Lee et al. 2002; Lee 2003), and we report the development
of a SIMD version that significantly accelerates this analysis. An
overview of Racon’s steps is given in Figure 3. The entire process
is also shown in detail in Algorithm 1.

To perform consensus calling (or error-correction), Racon de-
pends on an input set of query-to-target mappings (query is the set
of reads, while a target is either a set of contigs in the consensus
context or a set of reads in the error-correction context) as well
as quality values of the input reads. Racon then loads the map-
pings and performs simple filtering (Algorithm 1, lines 1–3;
Algorithm 2): (1) at most one mapping per read is kept in consen-
sus context (in error-correction context this particular filtering is
disabled), and (2) mappings that have a high error rate (i.e. |1−

min(dq,dt)/max(dq,dt)|≥ e, where dq and dt are the lengths of the
mapping in the query and the target, respectively, and e is a
user-specified error-rate threshold) are removed. For eachmapping
that survived the filtering process, a fast edit-distance–based align-
ment is performed (Algorithm 1, lines 4–10; Myers 1999).We used
the Edlib implementation of the Myers algorithm (Šošic ́ and Šikic ́
2016). This alignment is needed only to split the reads into chunks
that fall into particular nonoverlapping windows on the backbone
sequence. Chunks of reads with an average quality lower than a

Table 6. Quality, time, andmemory comparison of Racon and Sparc as consensus modules in a de novo assembly pipeline composed ofminimap
as an overlapper and miniasm as a layout module

miniasm+Racon: one
iteration

miniasm+Racon: two
iterations

miniasm+Sparc: one
iteration

miniasm+Sparc: two
iterations

Lambda ONT R7.3 30×
Average identity 97.59 97.97 95.04 96.87
CPU time (in min) 0.12 0.25 <0.1 0.14
Maximum memory (in GB) <0.1 <0.1 <0.1 <0.1

E. coli K-12 ONT R7.3 54×
Average identity 99.13 99.32 98.10 99.16
CPU time (in min) 25 46 28 54
Maximum memory (in GB) 3.32 3.32 3.37 3.37

S. cerevisiae S288C ONT
R9 59×
Average identity 97.88 98.04 97.77 98.02
CPU time (in min) 28 44 210 424
Maximum memory (in GB) 7.84 7.84 7.84 7.84

E. coli K-12 PacBio P6C4 160×
Average identity 99.63 99.90 99.34 99.76
CPU time (in min) 86 162 102 187
Maximum memory (in GB) 9.69 9.69 9.72 9.72

S. cerevisiae W303 PacBio P4C2
127×
Average identity 99.43 99.72 99.09 99.57
CPU time (in min) 115 215 297 587
Maximum memory (in GB) 16.09 16.09 16.09 16.09

C. elegans PacBio P6C4 81×
Average identity 99.44 99.73 99.16 99.57
CPU time (in min) 1247 2004 4032 8915
Maximum memory (in GB) 50.38 50.38 51.80 51.80

Both consensus tools were run on identical sets of raw contigs.

Figure 3. Overview of the Racon consensus process.
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predefined threshold are removed from the corresponding win-
dow. With this quality filter, we are able to use only high-quality
parts of reads in the final consensus. Each window is then pro-
cessed independently in a separate thread by constructing a POA
graph using SIMD acceleration and calling the consensus of the
window.Quality values are used again during POA graph construc-
tion, where each edge is weighted by the sum of qualities of its
source and destination nodes (bases; logarithmic domain). The fi-
nal consensus sequence is then constructed by splicing the indi-
vidual window consensuses together (per contig or read to be
corrected).

POA and SIMD vectorization

POA performs multiple sequence alignment (MSA) through a di-
rected acyclic graph (DAG), where nodes are individual bases of in-
put sequences, and weighted, directed edges represent whether
two bases are neighboring in any of the sequences. Weights of
the edges represent the multiplicity (coverage) of each transition.
Alternatively, weights can be set according to the base qualities
of sequenced data. The alignment is carried out directly through
dynamic programming (DP) between a new sequence and a pre-
built graph. While the regular DP for pairwise alignment has

Algorithm 1. The Racon algorithm for consensus generation.
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time complexity of O(3nm), where n and m are the lengths of the
sequences being aligned, the sequence to graph alignment has a
complexity of O((2np + 1)n|V|), where np is the average number of
predecessors in the graph and |V| is the number of nodes in the
graph (Lee et al. 2002).

Consensus sequences are obtained from a built POA graph by
performing a topological sort and processing the nodes from left to
right. For each node v, the highest-weighted in-edge e of weight ew
is chosen, and a score is assigned to v such that scores[v] = ew +
scores[w], where w is the source node of the edge e (Lee 2003).
The node w is marked as a predecessor of v, and a final consensus
is generated by performing a traceback from the highest-scoring
node r. In case r is an internal node (r has out edges), Lee (2003)
proposed the idea of branch completion, where all scores for all
nodes except scores[r] would be set to a negative value, and the tra-
versal would continue from r as before, with the only exception
that nodes with negative scores could not be added as predecessors
to any other node.

One important advantage of POA is its speed, with its linear
time complexity in the number of sequences (Lee et al. 2002).
However, implementations of POA in current error-correction
modules, such as Nanocorrect, are prohibitively slow for larger
data sets. In order to increase the speed of POA while retaining
its robustness, we explored a SIMD version of the algorithm
(SPOA).

SPOA (Fig. 4; Algorithm 3) is inspired by the Rognes and
Seeberg Smith-Waterman intra-set parallelization approach
(Rognes and Seeberg 2000). It places the SIMD vectors parallel to

the query sequence (the read), while placing a graph on the other
dimension of the DP matrix (Fig. 4). In our implementation, the
matrices used for tracking the maximum local-alignment scores
ending in gaps are stored entirely in memory (Algorithm 3, lines
8 and 10). These matrices are needed to access scores of predeces-
sors of particular nodes during alignment. Unlike a regular
Gotoh alignment (Gotoh 1982), for each row in the POA DP ma-
trix, all its predecessors (via in-edges of the corresponding node
in graph) need to be processed as well (Algorithm 3, line 17). All
columns are then processed using SIMD operations in a query-par-
allel manner, and the values of Gotoh’s vertical matrix (Algorithm
3, line 20) and a partial update to Gotoh’s main scoring matrix
(Algorithm 3, line 24) are calculated. SIMD operations in
Algorithm 3 process eight cells of the DP matrix at a time (16-bit
registers). A temporary variable is used to keep the last cell of the

Algorithm 2. Functions for filtering mappings/overlaps in Racon.

Figure 4. Depiction of the SIMD vectorization approach used in SPOA.
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previous vector for every predecessor (Algorithm 3, lines 21–23),
which is needed to compare the upper-left diagonal of the current
cell to the cell one row up. Processing the matrix horizontally is
not performed using SIMD operations due to data dependencies
(each cell depends on the result of the cell to the left of it) and is
instead processed linearly (Algorithm 3, lines 25–33). SPOA uses
shifting and masking to calculate every particular value of a

SIMD vector individually (Algorithm 3, lines 29–31). After the
alignment is completed, the traceback is performed (Algorithm
3, line 39) and integrated into the existing POA graph
(Algorithm 3, line 40).

SIMD intrinsics decrease the time complexity for alignment
from O((2np + 1)n|V|) to roughly O((2np/k + 1)n|V|), where k is the
number of variables that fit in a SIMD vector. SPOA supports

Algorithm 3. Pseudocode for the SPOA algorithm. The displayed function aligns a sequence to a preconstructed POA graph using SIMD intrinsics.
Capitalized variables are SIMD vectors. Alignment mode is Needleman-Wunsch.
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Intel SSE version 4.1 and higher, which embed 128-bit registers.
Both short (16 bits) and long (32 bits) integer precisions are sup-
ported (therefore k equals eight and four variables, respectively).
Eight-bit precision is insufficient for the intended application of
SPOA and is therefore not used. Alongside global alignment dis-
played in Algorithm 3, SPOA supports local and semi-global align-
mentmodes, in which SIMD vectorization is implemented as well.

Implementation and reproducibility

Racon and SPOA are both implemented in C++. All tests were run
using Ubuntu-based systems with two six-core Intel Xeon E5645
CPUs at 2.40 GHz with hyperthreading, using 12 threads where
possible. The versions of variousmethods used in the comparisons
reported here are shown in Table 7. On PacBio data sets, Canu was
run using the “-pacbio-raw” option, FALCON using the config file
presented in Supplemental Table S4, and Sparc using “k 1 c 2 g 1 t
0.2”. On ONT data sets, Canu was run using the “-nanopore-raw”

option, FALCON using the config file presented in Supplemental
Table S5, and Sparc using “k 2 g 2 t 0.2”. To provide initial align-
ments for Sparc, BLASR was run using “-bestn 1 -m 5 -minMatch
19”. Racon was run with the default parameters on all data sets ex-
cept S. cerevisiae S288c ONT R9, where we increased the base qual-
ity value threshold to 20 using the parameter “- -bq 20” (the default
value is 10). To provide the initial raw assemblies for both Racon
and Sparc, minimap (as an overlapper) and miniasm were used.
Minimap was run using the “-Sw5 -L100 -m0” options on all
data sets (PacBio and ONT); miniasm, with default parameters.
For error-correction purposes, Canuwas run using “-correct -nano-

pore-raw”, FALCON with an additional config entry “target = pre-
assembly,” and Racon with the “- -erc” option.

Data sets

Six publicly available PacBio and Oxford Nanopore data sets were
used for evaluation. These are listed in Table 8.

Evaluation methods

The quality of called consensus sequences was evaluated primarily
using Dnadiff (Delcher et al. 2003). The parameters we took into
consideration for comparison include total number of bases in
the query, aligned bases on the reference, aligned bases on the que-
ry, and average identity. In addition, we measured the time and
memory required to perform the entire assembly process by each
pipeline.

The quality of error-corrected reads was evaluated by aligning
them to the reference genomeusingGraphMap (Sovic ́ et al. 2016b)
with the settings “-a anchorgotoh” and counting the match, mis-
match, insertion, and deletion operations in the resulting
alignments.

Software availability

Racon and SPOA are available open source under the MIT license
at https://github.com/isovic/racon and https://github.com/
rvaser/spoa. In addition, the version of source codes used in this
study can be found in the Supplemental Material.

Table 7. Versions of various tools used in this paper

Tool Commit/version Source

Racon 2f41352ab4aa on branch grpaper https://github.com/isovic/racon
minimap 1cd6ae3bc7c7 https://github.com/lh3/minimap
miniasm 17d5bd12290e https://github.com/lh3/miniasm
Canu ab50ba3c0cf0 https://github.com/marbl/canu
FALCON-integrate 8bb2737fd1d7 https://github.com/PacificBiosciences/FALCON-integrate
Sparc ae89503a1613 https://github.com/yechengxi/Sparc
Nanocorrect b09e93772ab4 https://github.com/jts/nanocorrect
Nanopolish 47dcd7f147c https://github.com/jts/nanopolish
MUMmer 3.23 http://mummer.sourceforge.net/

Table 8. Description of the six data sets used for evaluation

Data set Description

Lambda phage ONT R7.3 ENA submission ERA476754, with 113× coverage of the NC_001416 reference genome (48,502 bp). Link: ftp://ftp.
sra.ebi.ac.uk/vol1/ERA476/ERA476754/oxfordnanopore_native/Lambda_run_d.tar.gz. This data set was subsampled
to coverages of 30× and 81× for testing.

E. coli K-12 ONT R7.3 54× pass 2D coverage of the genome (U00096.3, 4.6Mbp). Link: http://lab.loman.net/2015/09/24/first-sqk-map-006-
experiment/.

E. coli K-12 PacBio P6C4 160× coverage of the genome (U00096.3). The data set was generated using one SMRT cell of data gathered with a
PacBio RS II System and P6-C4 chemistry on a size-selected 20-kbp library of E. coli K-12. Link: https://s3.amazonaws.
com/files.pacb.com/datasets/secondary-analysis/e-coli-k12-P6C4/p6c4_ecoli_RSII_DDR2_with_15kb_cut_E01_1.tar.gz.

S. cerevisiae S288c ONT R9 59× 2D (pass and fail) coverage of the genome (http://downloads.yeastgenome.org/sequence/S288C_reference/
chromosomes/fasta/). Link: http://www.genoscope.cns.fr/externe/Download/Projets/yeast/datasets/raw_data/
S288C/ (Istace et al. 2016).

S. cerevisiae PacBio W303
PacBio P4C2

The data set is composed of 11 SMRT cells (https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-
cerevisiae-W303-Assembly-Contigs), of which one was not used in this study because the containing folder
(“0019”) was incomplete and the data could not be extracted. The S288C reference (12.1 Mbp) was used for
comparison (http://downloads.yeastgenome.org/sequence/S288C_reference/chromosomes/fasta/). Coverage of the
data set with respect to the S288C reference is approximately 127×.

C. elegans PacBio P6C4 Bristol mutant strain, 81× coverage of the genome (gi|449020133). The data set was generated using 11 SMRT cells
P6-C4 chemistry on a size-selected 20-kbp library. Link: https://github.com/PacificBiosciences/DevNet/wiki/C
.-elegans-data-set.
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