
DOI: http://dx.doi.org/10.14236/ewic/ics-csr2014.1

A SysML Extension for Security Analysis of
Industrial Control Systems

Laurens Lemaire
KU Leuven

Department of Industrial Engineering
Gebroeders Desmetstraat 1, 9000 Ghent, Belgium

laurens.lemaire@cs.kuleuven.be

Jorn Lapon
KU Leuven

Department of Industrial Engineering
Gebroeders Desmetstraat 1, 9000 Ghent, Belgium

jorn.lapon@cs.kuleuven.be

Bart De Decker
KU Leuven

iMinds-DistriNet
Celestijnenlaan 200A, 3001 Heverlee, Belgium

bart.dedecker@cs.kuleuven.be

Vincent Naessens
KU Leuven

Department of Industrial Engineering
Gebroeders Desmetstraat 1, 9000 Ghent, Belgium

vincent.naessens@cs.kuleuven.be

The security of Industrial Control Systems (ICS) has become an important topic. Recent attacks have shown
that inadequately protecting control systems could have disastrous consequences for society.
This paper presents an extension for the Systems Modeling Language (SysML), allowing for the extraction
of vulnerabilities from an industrial control system model. After a control system is modeled in SysML, the
model is converted into input for a formal reasoning tool. This tool contains a logic theory which is used
for the vulnerability extraction. The rules in this logic theory are inferred from the ICS-CERT vulnerability
database and ICS security standards. Once the vulnerabilities have been extracted, they are included in the
SysML diagrams of the model.
The modeling approach allows the user to quickly see which changes to the system get rid of the reported
vulnerabilities. It is also possible to mark certain components as compromised to see the consequences
of attacks on these components for system security as a whole. The resulting analysis can be used to
strengthen the security of the control system.

Keywords: Industrial control systems security, SysML

1. INTRODUCTION

Industrial Control Systems (ICS) are used for re-
motely controlling and monitoring critical infrastruc-
tures such as power stations, wastewater treatment
facilities, or nuclear plants. These infrastructures
are labelled critical because they provide society
with essential resources like water and electricity. If
these services stop functioning correctly, the con-
sequences could be catastrophic: Large parts of
cities could be left without electricity, raw sewage
could spill into parks and rivers, or in the worst
case nuclear meltdowns could occur with release of
radioactive material as a result.

Security should be a major priority when designing
and maintaining industrial control systems. Unfor-
tunately this was not the case until the Stuxnet
worm showed the powerful effects that attacks on
these systems could have Matrosov et al. (2011);
Falliere et al. (2011). By over-pressuring centrifuges

and over-speeding their rotor blades, the Stuxnet
worm was able to cause serious problems at the
Natanz fuel enrichment plant in Iran Langner (2013).
Other notable ICS incidents include the Maroochy
Shire sewage spill in Australia Abrams and Weiss
(2008), the Slammer worm disabling the David-
Besse nuclear power plant in Ohio Poulsen (2003),
and discovery of worms and Trojan backdoors like
Duqu Chien et al. (2012) and Night Dragon Cy-
berattacks (2011) that gather information about
control systems to make future attacks like Stuxnet
possible.

Because of such incidents, research has been
dedicated to the security of industrial control
systems. Organisations such as NIST, ISA, and ISO
are defining standards regarding security in these
systems Stouffer et al. (2011); ANSI/ISA (2013);
ISO/IEC (2008). Research groups have written
numerous papers that review security issues in
industrial control systems and list cyber attacks that

c© Lemaire et al. Published by BCS
Learning & Development Ltd. 1
Proceedings of the 2nd International Symposium for ICS & SCADA Cyber Security Research 2014



A SysML Extension for Security Analysis of Industrial Control Systems
Lemaire • Lapon • De Decker • Naessens

they are vulnerable against Cheminod et al. (2013);
Zhu et al. (2011); Cárdenas et al. (2008).

1.1. Related work

Several tools have been developed to assess
security in control systems. Homeland Security
has created CSET, the Cyber Security Evaluation
Tool Homeland Security (2014). This tool checks
compliance of a system with a chosen standard
through a question and answer method. CSET does
not provide an architectural analysis, and also does
not allow the user to reason about compromised
components and their effects on the system security,
contrary to our method.

The KTH in Stockholm has developed CySeMoL,
the Cyber Security Modeling Language Sommestad
et al. (2013, 2010), a tool for estimating the prob-
ability that attacks succeed against an enterprise
system. Similar to our method, CySeMoL allows
users to change their system architecture and view
the resulting changes on the attack probabilities.
However, only the attacks that have been defined by
the tool creators are considered. CySeMoL has to be
updated when new attack methods are discovered.
For their attack probabilities, CySeMol assumes that
the attacker is a penetration tester who only has
access to public tools and only tries to attack the
system for one week. Previous ICS incidents like
Stuxnet have shown that more powerful attackers
must be considered.

ValueSec has redesigned Lancelot Pérez and
Machnicki (2013), a tool previously used for
evaluating the security of complex ICT systems in
the financial sector. It is now a risk management
platform that enables users to analyse security
risks and their business implications for the smart
grid and SCADA (Supervisory Control And Data
Acquisition) environment. SCADA systems are a
subset of ICS Stouffer et al. (2011). Lancelot
allows a user to define the system’s assets and
to attribute risk profiles to them. It then performs
security reviews to detect risks and compliance
issues, and prepares mitigation plans to deal with
the risks that are found. Risk in Lancelot is defined
as “the potential damage that can be caused when
something goes wrong with an asset or when
someone/something takes advantage of an asset’s
vulnerabilities”. It is assumed that the user of the
program already has knowledge of the vulnerabilities
in his system. Lancelot does not help with identifying
vulnerabilities.

There are several other tools or methods to
conduct risk assessment, but they also assume
that the vulnerabilities are already known Francia III
et al. (2012). Most risk assessment methods start

with a meeting between the team performing the
assessment and the system engineers den Braber
et al. (2003). During this meeting they brainstorm
about possible vulnerabilities that the system could
have. Our tool automates this phase and the results
could, hence, be used as input for risk assessment.
When using our tool, a system engineer only
has to enter the system architecture, assign the
relevant security properties to components, and the
vulnerabilities are extracted automatically.

1.2. Contribution

This work presents a formal methodology to detect
vulnerabilities in industrial control systems. The
control systems are modeled in the Systems
Modeling Language (SysML), and then converted
into input for the Inductive Definition Programming
framework (IDP) Wittocx et al. (2008); Bogaerts
et al. (2012). There, a logic-based theory using
induction rules automatically infers vulnerabilities
and corresponding attacks that could occur in
the system. Both the modeling method and the
IDP framework are explained in detail in further
sections. Changing the security properties of some
components allows users to reason about scenarios
in which attackers have breached or compromised
certain components. It is also possible to analyse
the effects of system changes, newly discovered
weaknesses, implemented countermeasures, etc.

This paper introduces the approach and describes
the work that has been done so far. The modeling
method is validated on a case study.

1.3. Outline

The structure of this paper is as follows. Section 2
contains some background on industrial control
systems, explaining common architectures and
detailing the differences between ICS and IT with
respect to security needs. Section 3 introduces the
Systems Modeling Language (SysML). In Section 4,
the methodology of our approach is explained.
Section 5 presents the IDP framework, which is used
for the reasoning, and explains how control systems
are modeled in this framework. In Section 6 we
discuss the reasoning aspect of the IDP framework.
Section 7 contains a validation on a case study, a
brewery. Finally, Section 8 concludes the paper and
contains future work.

2. OVERVIEW OF INDUSTRIAL CONTROL
SYSTEMS

An industrial control system consists of a number
of field devices that are being supervised from a
centralised location Fovino et al. (2010); Galloway
and Hancke (2013). The industrial network contains

2



A SysML Extension for Security Analysis of Industrial Control Systems
Lemaire • Lapon • De Decker • Naessens

common network elements such as workstations,
an e-mail server, databases, etc. In addition, it
contains a Master Terminal Unit (MTU), and a
Human Machine Interface (HMI) workstation. These
can both be used to monitor and control the field
devices. There is also a historian that is used
to log time-based process data. The field devices
contain several sensors and actuators that are being
locally controlled by Programmable Logic Controllers
(PLCs) or Intelligent Electronic Devices (IEDs).

In the past, these controllers and the communication
protocols they use would be specifically tailored to
the system. Control systems used to be isolated
and proprietary, making it harder to mount attacks
against them. Security was not a concern, other than
preventing unauthorized access to the premises.
Nowadays, the systems contain commercial, off-
the-shelf components, and are often connected to
the corporate network of the company that owns the
system, as well as the internet ENISA (2011). These
changes have made it easier to access and manage
the system, but at the same time, they have also
made it a lot easier for attackers to do harm.

Often a distinction is made between SCADA
(Supervisory Control And Data Acquisition) systems
and DCS (Distributed Control Systems) Stouffer
et al. (2011). SCADA systems are geographically
more spread out than DCS, and their field devices
might be thousands of kilometres away from the
MTU. They are mainly used in the energy, water, and
transport sector. In DCS the network of controllers
is less spread out. For example a production
environment like a factory might use a DCS to control
all operations. Our methodology can be used to
model both types of ICS.

ICS differ from standard IT systems in architecture
and security concerns. For IT systems the literature
often speaks of the CIA triad - Confidentiality,
Integrity, Availability, since those are the three most
important security features Purdue (2004). Due
to the critical nature of the supervised operations
in ICS, there are other important dependability
concerns such as safety and reliability. When
something goes wrong in an ICS, there might be
lives at stake. This is rarely the case in IT systems.
It has lead to the use of the SRA (Safety, Reliability,
Availability) triad in ICS Adesina (2012).

With different security requirements should come
different security solutions. Unfortunately this has
not always been the case. Quite often, attempts
are made to fix problems in ICS with IT security
countermeasures Larkin et al. (2012). Sometimes
this works, but in other cases it has had the
opposite effect. A technique often used in IT
systems is automatic software updates, sometimes

requiring a reboot. This has a negative effect on
the network availability and reliability requirements
of ICS systems and may therefore not be possible
Tom et al. (2008).

It follows that new methods and tools for improving
the security of industrial control systems must be
considered.

3. THE SYSTEMS MODELING LANGUAGE
(SYSML)

SysML is a modeling language, derived from UML,
that is used in Model-Based Systems Engineering
(MBSE). MBSE is defined as “the formalized appli-
cation of modeling to support system requirements,
design, analysis, verification, and validation activities
beginning in the conceptual design phase and con-
tinuing throughout development and later life cycle
phases.” Crisp (2007). The advantage of MBSE over
traditional Document-Based Systems Engineering is
that the former produces a system model contained
in a model repository, while the latter produces a
variety of documents, making it more difficult to
perform traceability and assess change impacts.

UML is mostly used in software engineering. SysML
reuses part of UML and adds diagrams for modeling
systems and systems-of-systems. It is developed
and maintained by the Object Management Group
(OMG). SysML includes nine diagrams which are
shown in Figure 1. Four diagrams concern the
system behaviour, four concern the system structure,
and the final one is a requirements diagram. SysML
can not only be used to model software, but also
hardware, information, processes, personnel, and
facilities. A description of each diagram is out of the
scope of this paper.

ICS operators are increasingly often using SysML
to model control systems. For instance, General
Electric Transportation Systems (GETS) uses it for
production of their railway signaling applications
Ferrari et al. (2011).

SysML is a language, various tools support it and
allow a user to model with SysML. For this work,
an open source SysML environment is required to
create the extension that converts SysML models
into suitable input for the reasoning tool. Papyrus has
been chosen for this purpose. It is an Eclipse tool
that provides complete support for SysML.

3.1. Security in SysML

Currently none of the diagrams in SysML provide
a way to consider system security. A paper by
Oates et al. (2013) talks about the lack of system
security in Model-Based System Engineering, and in

3



A SysML Extension for Security Analysis of Industrial Control Systems
Lemaire • Lapon • De Decker • Naessens

SysML
Diagram

Requirement
Diagram

Behavior
Diagram

Structure
Diagram

Activity

Diagram

Sequence

Diagram Diagram Diagram Diagram Diagram Diagram Diagram

State
Machine

Use Case Block
Definition

Internal
Block

Parametric Package

Figure 1: The nine diagrams included in SysML.

particular in SysML. In that paper they say that little
work is done from the perspective of automatically
pulling relevant information from an existing model
to highlight security vulnerabilities. That is what this
work aims to achieve. At the end of their paper
they suggest a threat agent diagram, based on the
threat-risk relationship from ISO/IEC (2008). When
our method finds any vulnerabilities, they can be
included in SysML in a similar diagram.

4. METHODOLOGY

The aim of this research is to create a SysML ex-
tension which allows a user to identify vulnerabilities
in an industrial control system based on the system
model. It is also possible for the user to reason about
the effects of newly discovered weaknesses, suc-
cessful attacks, and system changes on the system
security. The formal reasoning part of the extension
contains a collection of logic rules that are used
in the vulnerability extraction. The user input is the
system architecture. Figure 2 presents an overview
of the methodology. The components of this figure
will be explained in detail in further sections.

An industrial control system is modeled in the
Systems Modeling Language (SysML). Then the
model is converted into input for our formal
reasoning framework, we use the Inductive Definition
Programming framework (IDP) for this purpose.
This framework contains a logic theory that infers
vulnerabilities from the system architecture. Some
of these rules are taken from the ICS-CERT
vulnerability database, others from standards and
guidelines such as the ones from ISA, DHS and
NIST Stouffer et al. (2011); ANSI/ISA (2013);
Security (2011). The result is a collection of system
vulnerabilities, these will then be included in the
SysML model.

This approach can be useful for users who are
designing a new control system, as well as for
operators who want to check the security of an
existing one.

5. INDUCTIVE DEFINITION PROGRAMMING
FRAMEWORK

The Inductive Definition Programming framework
(IDP) is an extension of first order logic. It adds
additional functionality such as aggregates, partial
functions, inductive definitions, etc. The framework
is used to solve search problems using model
expansion. It takes as input a partial model and
a list of constraints in the form of logic rules, and
returns one or more complete models that satisfy
these constraints Wittocx et al. (2008); Bogaerts
et al. (2012).

The input for an IDP instance consists of a
vocabulary, a theory and a structure. The theory
contains all the logic rules and inductive definitions
that will be used to draw conclusions. In the structure
part, the system under consideration is modeled. In
the vocabulary, the types, predicates, and functions
that will be used in the theory and the structure are
specified.

In this problem domain, namely ICS, the same vo-
cabulary and theory can be reused to model all sys-
tems. The structure differs from system to system,
as it contains the components of the specific ICS
that is being modeled. Below, an overview is given of
what an ICS model looks like in the IDP framework.

In the vocabulary, supported types include:

– type SystemPart

– type Component isa SystemPart

– type CommChannel isa SystemPart

4



A SysML Extension for Security Analysis of Industrial Control Systems
Lemaire • Lapon • De Decker • Naessens

SysML System Diagrams

System dependent input

Industrial Control System ICS-CERT NIST / ISA / ...

System independent input

Formal Reasoning Conclusions

Figure 2: An overview of the methodology.

It is specified that Component and CommChannel
are subtypes of SystemPart. These types are cur-
rently “empty” and will be initialised in the structure
part with the components and communication chan-
nels that are present in the ICS under consideration.

Types Property and V ulnerability are constructed
from a set of constants in the vocabulary using
the constructed from command. This allows a
user to consider the same security properties and
vulnerabilities in all ICS, without having to list them
in the structure every time.

– type Property constructed from
{Integrity, Authentication, . . .}

– type V ulnerability constructed from
{Spoof, UnsafeMediaAccess, . . .}

Predicates are also defined in the vocabulary. Here
are two examples:

– HasProperty(SystemPart, Property)

– HasV ulnerability(SystemPart,
V ulnerability)

The first predicate will allow users to associate
security properties with system parts. Pairs of
properties and system parts will be enumerated by
the user in the structure. The second predicate does
not get initialised by the user. The tool will use the
rules specified in its theory to deduce vulnerabilities
in system parts, and these will be represented by
this predicate. When the control system has been
modeled and the vulnerability extraction is done,
a list of pairs of the HasV ulnerability predicate
will be returned, and can be consulted to find
the vulnerabilities in the system. When a user
wants to reason about the effects of compromised
components, he can also define vulnerabilities in the
structure using this predicate.

In the theory, logic rules are specified that allow
the tool to find vulnerabilities based on security
properties. Examples of rules are given below:

– ∀x[CommChannel] :
HasV ulnerability(x, Spoof)←
¬HasProperty(x, Authentication)

– ∀x[SystemPart] :
HasV ulnerability(x, UnsafeMediaAccess)←
HasProperty(x, NoMediaPolicy)

The first rule states that all communication channels
that do not have the authentication property are vul-
nerable to spoofing attacks. Without authentication,
an attacker is able to send malicious commands to
parts of the control system. This can have severe
consequences, as he may be able to shut down the
system.

The second rule concerns media access of
components. If there are no policies regarding the
usage of USB devices on a component, then there
is a risk of malware being uploaded. This could
be done on purpose by malicious individuals that
have access to the component, or employees could
accidentally bring in compromised media.

In the structure part, all the components and
communication channels of the specific system
being modeled are listed and are given the
appropriate security properties by instantiating the
HasProperty predicate where applicable. Some
examples of components and properties are given
below.

– Component = {HMI, MTU, Historian, . . .}
– HasProperty = {(HMI, NoMediaPolicy), (MTU,

Authentication), . . .}

The first line specifies the components in the system
being modeled. The second line binds properties
to these components. The first property states that
there is no policy regarding media access to the
HMI. The second property says that there is some
form of authentication required to access the MTU.
Additional predicates can specify the authentication
factor and authentication methods (password, token,
biometrics, . . . ) to allow for better rules regarding
authentication vulnerabilities.

5



A SysML Extension for Security Analysis of Industrial Control Systems
Lemaire • Lapon • De Decker • Naessens

Once the system has been represented using
the above types, predicates, and functions, a
partial model is made and the logic rules act
as constraints. Under these constraints, the full
model is created by IDP’s model expansion.
When the model expansion is finished, we are
interested in the HasV ulnerability predicate which
will list the vulnerabilities for each component and
communication channel. After a first run of the
program, the security properties of components can
be altered or vulnerabilities can be added to model
the effects of successful attacks or changes to the
system. The framework for our model is shown in
Figure 3.

6. SYSTEM INDEPENDENT REASONING INPUT

The IDP logic theory which will draw the vulner-
abilities from the model input is largely based on
two system independent resources: The ICS-CERT
vulnerability database and standards regarding ICS
security such as the ones from NIST, ISA, ISO, and
others. Rules from these resources will allow us to
identify vulnerable components. Then, another set
of rules assesses the impact of these vulnerable
components on system security as a whole.

The ICS-CERT vulnerability database is managed by
the Department of Homeland Security. It contains
a collection of all the known vulnerabilities in
hardware or software related to Industrial Control
Systems, including PLCs, HMIs, historians, industrial
operating systems, and so on. They have two
collections on their site: ICS alerts and ICS
advisories. Alerts inform the reader about newly
discovered vulnerabilities, advisories contain fixes
and mitigations for existing vulnerabilities. Both
collections are fully included in our IDP logic theory.

As an example, consider ICS − ALERT − 14 −
015− 01 which reports a buffer overflow in the Ecava
IntegraXor HMI software ICS-CERT (2014). There
are predicates in IDP that allow a modeler to specify
the type and version of certain components. For
instance the predicate:

PLC(Component, Product, V ersion)

For each PLC component in the system or system-
of-systems, the user can specify the vendor and
version information by using this predicate. For
instance there could be a component “plc1” which is
a Siemens Simatic S7-1200 PLC. Then the following
tuple would be added to the list of PLC predicates in
the structure:

(plc1, SiemensSimaticS7, 1200)

Similar predicates exist for industrial operating
systems, HMIs, historians, third party software, etc.
Hence, based on the above alert, the following rule
is added to the logic theory:

// ICS-ALERT-14-015-01
∀x[Component] : HasV ulnerability(x,
BufferOverflow) ←
HMI(x, EcavaIntegraXor, 4.14380).

It says that, for all components x, if x is an HMI
of type Ecava IntegraXor and version 4.14380,
component x contains a buffer overflow vulnerability.

Other rules come from the various standards and
guidelines that have been consulted, including the
NIST standard on Industrial Control System security
Stouffer et al. (2011), the ISA/IEC-62443 standard
ANSI/ISA (2013), an extensive document on ICS
security from Homeland Security Security (2011),
other standards and guidelines ENISA (2011), as
well as various papers Cheminod et al. (2013); Zhu
et al. (2011); Cárdenas et al. (2008). From these
resources, rules can be inferred regarding:

– Authentication. There should be multi-factor
authentication. Using tokens and biometrics
is encouraged for critical components as an
operator might forget a complicated password
in case of emergency.

– Passwords. Where passwords are used they
should follow certain guidelines regarding
password length and types of characters
employed to ensure strong passwords. Default
passwords should be changed on all devices.

– Media Access. USB ports should be blocked
wherever they aren’t necessary. When USB
access is required, USB devices should
be controlled prior to usage. Otherwise,
employees could accidentally upload viruses or
malicious individuals could do this on purpose.

– Physical Access. Physical access to sensors
and actuators should be prevented if this can
negatively affect the process. If this is difficult
to achieve, camera surveillance should be
considered.

– Hardening. Hardening means reducing the
vulnerability surface by removing unnecessary
or unused services, software, and usernames.

– Network Architecture. It is good practice to
put historians and databases in a DMZ. That
way there is no direct connection required from
the corporate network to the control network,
they only have to be able to access the DMZ.

6



A SysML Extension for Security Analysis of Industrial Control Systems
Lemaire • Lapon • De Decker • Naessens

Vocabulary (V) Theory (T)

System Independent Modelling

L
og
ic
C
om
po
ne
nt

C
on
cl
us
io
ns

Structure (S)

Attackers

Attacks

Attack Model System Model

Components Channels

Properties VulnerabilitiesIn
pu
t
M
od
el

Figure 3: Framework for ICS Modeling in IDP.

The above rules allow the system to extract
vulnerabilities on a component level. Additional
rules are in place to deduce the impact of
these component vulnerabilities on the system. For
instance if a malicious user can exploit a buffer
overflow to cause a denial of service of a component,
the framework would report what other components
will be affected by this. These rules have not been
fully implemented yet.

7. VALIDATION

The parts of the methodology that are already
implemented have been validated on a real case
study. There are several reasons for this. In order
to get familiar with modeling in SysML, it helps to
model a small system. It is also an opportunity to
test Papyrus and see if it is suitable for our purposes.
The system is also modeled directly in IDP, this gives
us an idea of what predicates will be necessary to
model these systems and it will make the conversion
from SysML to IDP easier. The reasoning can
be tested on a component level, we can see if
IDP behaves as expected when vulnerabilities are
introduced or system parts are changed.

The chemical department at the campus of KAHO
Sint-Lieven owns a brewery. This brewery is a
small industrial control system. It contains four
cauldrons where the brewing process takes place.
A pump ensures that the brew flows from cauldron
to cauldron. There is an electrical enclosure with a
Programmable Logic Controller inside. A supervision
computer is installed to monitor and control the
process. Currently all supervision has to be done
locally inside the brewery, but there are plans to
make remote controlling and monitoring possible in
the future.

To start, we modeled the full system in SysML using
Papyrus. Showing the full result is not feasible as
it consists of many diagrams. One of the Internal
Block Diagrams is shown in Figure 4. Internal
Block Diagrams are used to describe the internal
structure of blocks. They show how parts and
ports are connected. This particular IBD shows the
internal working of the supervision component of the
brewery. The brewery has a PLC in an electrical
enclosure, theres an HMI with a touchscreen from
where a user can change parameters or send
commands to the process. This is done over a
profibus link. A second IBD called “Process” is
connected to the Process block in the Supervision
IBD, and the details of the process containing the
cauldrons and the pump go in there.

Modeling in SysML and Papyrus is intuitive and there
is ample documentation available online to help the
modeler out.

We then modeled the system directly in IDP. All
components and communication channels were
listed in the structure and the relevant properties
were bound to them. Some additional predicates
were defined to capture all the security-related
properties. For instance, the supervision computer
requires authentication in the form of a password.
Authentication methods and the authentication
factor can be tied to components that require
authentication as follows:

– AuthenticationMethod(Component, Method)

– AuthenticationFactor(Component, Factor)

A list of authentication methods is provided in the
Vocabulary, including Password, Token, Biometric,
etc. Type Factor contains integers.

7



A SysML Extension for Security Analysis of Industrial Control Systems
Lemaire • Lapon • De Decker • Naessens

part

: Network

actor part

: Operator

part

: Supervision Computer

inout ethernet: TCP/IP

in : Touchscreen

part

: Electrical Enclosure

part

: PLC

inout : Serial

part

: Data Connection

part

: Profibus
inout : Profibus

part

: Process

inout : Profibus

Figure 4: A SysML Internal Block Diagram in Papyrus.

After the system was modeled, the reasoning rules
extracted the component vulnerabilities, some of
which are listed below:

– HasV ulnerability(PLC, PhysicalAccess)

– HasV ulnerability(HMI,
LowAuthenticationFactor)

– HasV ulnerability(HMI,
UnsafeMediaAccess)

The brewery can be accessed by anyone, so there
are several physical access concerns. The PLC
is inside an electrical enclosure but this enclosure
isn’t locked. The supervision PC requires only a
password to gain access, this is not very secure.
There is also a USB port on which any media device
can be used. None of the components of the system
are in the ICS-CERT vulnerability database.

Once the first set of vulnerabilities appeared,
changes were made to the model in IDP to see
which changes to the system would make the
vulnerabilities disappear. This all works as intended,
and suggestions have been made to the brewery
operator to improve the security of his system.

8. CONCLUSION

A SysML extension for security analysis of Industrial
Control Systems is being developed. The control
systems are modeled in SysML, using Eclipse
Papyrus, and then converted to IDP input, where
the analysis is done. To do this analysis we have

a logic theory containing rules derived from ICS-
CERT and various ICS security standards. The
modeling approach and the reasoning aspect have
been validated on a brewery case study.

8.1. Future work

Modeling the system is implemented and tested
both in SysML and IDP. The vulnerability extraction
rules are also in place. What remains to do is to
create the conversion from SysML to IDP input,
as well as creating the diagrams that will show
the vulnerabilities in the SysML model. The logic
rules that infer the system vulnerabilities from the
component ones are also not fully implemented yet.

When complete, the extension will be tested on
a case study. Talks are ongoing with the Flemish
Environment Agency to use one of their water
installations and their supervisory centre as a full-
scale case study.

REFERENCES

Abrams, M. and Weiss, J. (2008) Malicious
control system cyber security attack case study–
Maroochy Water Services, Australia.

Adesina, T. (2012) The state of industrial control
systems security and national critical infrastructure
protection: Emerging threats.

ANSI/ISA-62443-3-3 (99.03.03) (2013) Security for
industrial automation and control systems Part
3-3: System security requirements and security
levels.

8



A SysML Extension for Security Analysis of Industrial Control Systems
Lemaire • Lapon • De Decker • Naessens

Bogaerts, B. et al. (2012) The IDP framework
reference manual.

Cárdenas, A. A., Amin, S., and Sastry, S. (2008)
Research challenges for the security of control
systems. In: HotSec.

Cheminod, M., Durante, L., and Valenzano, A. (2013)
Review of security issues in industrial networks.
IEEE Trans. Ind. Informat., 9 (1). 277–293.

Chien, E., OMurchu, L., and Falliere, N. (2012)
W32.Duqu: The precursor to the next stuxnet. In:
Proc. of the 5th USENIX Workshop on Large-
Scale Exploits and Emergent Threats (LEET).

Crisp, H. (2007) Systems engineering vision 2020.

Cyberattacks, G. E. (2011) Night dragon.

den Braber, F. et al. (2003) The CORAS method-
ology: Model-based risk assessment using UML
and UP.

ENISA (2011) Protecting industrial control systems:
Recommendations for Europe and member states.

Falliere, N., Murchu, L., and Chien, E. (2011)
W32.Stuxnet Dossier.

Ferrari, A. et al. (2011) Adoption of model-based
testing and abstract interpretation by a railway
signalling manufacturer.

Fovino, I., Coletta, A., and Masera , M. (2010)
Taxonomy of security solutions for the SCADA
sector, deliverable: D 2.2, version: 1.1.

Francia, III, G. A., Thornton, D., and Dawson, J.
(2012) Security best practices and risk assess-
ment of SCADA and industrial control systems.

Galloway, B. and Hancke, G. P., (2013) Introduction
to industrial control networks. IEEE Commun.
Surveys Tuts., 15 (2), 860–880.

Homeland Security - HCC (2014) CSET: Cyber
security evaluation tool.

ICS-CERT (2014) Ecava IntegraXor buffer overflow
vulnerability.

ISO/IEC 21827 (2008) Information technology – se-
curity techniques – systems security engineering
– capability maturity model (SSE-CMM). Geneva,
Switzerland.

Langner, R. (2013) To kill a centrifuge: A technical
analysis of what Stuxnet’s creators tried to
achieve.

Larkin, R., Lopez, J., and Butts, J. (2012)
Evaluation of traditional security solutions in the
SCADA environment. In: Proceedings of the 7th
International Conference on Information Warfare
and Security. 399.

Matrosov, A. et al. (2011) Stuxnet under the
microscope.

Oates, R., Thom, F., and Herries, G. (2013) Security-
aware, model-based systems engineering with
SysML. In: Proceedings of the 1st International
Symposium for ICS & SCADA Cyber Security
Research. 78.

Pérez, J. M. and Machnicki, D. (2013) VALUE-SEC
D5.3–Description of developed tools and data.

Poulsen, K. (2003) Slammer worm crashed Ohio
nuke plant network.

Purdue (2004) RASC: Confidentiality, integrity and
availability (CIA).

Security, H. (2011) Common cyber security vulnera-
bilities in industrial control systems.

Sommestad, T., Ekstedt, M., and Holm, H. (2013)
The cyber security modeling language: A tool for
assessing the vulnerability of enterprise system
architectures. IEEE Syst. J., 7 (3), 363–373.

Sommestad, T., Ekstedt, M., and Nordström, L.
(2010) A case study applying the cyber security
modeling language.

Stouffer, K., Falco, J., and Scarfone, K. (2011) Guide
to industrial control systems (ICS) security.

Tom, S., Christiansen, D., and Berrett, D. (2008)
Recommended practice for patch management of
control systems.

Wittocx, J., Mariën, M., and Denecker, M. (2008)
The IDP system: A model expansion system for
an extension of classical logic. In: Proceedings of
the 2nd Workshop on Logic and Search. 153–165.

Zhu, B., Joseph, A., and Sastry, S. (2011) A
taxonomy of cyber attacks on SCADA systems.
In: Internet of Things (iThings/CPSCom), 2011
International Conference on and 4th International
Conference on Cyber, Physical and Social
Computing. 380–388.

9


