The closure of the Vardar ocean (the western domain of the northern Neotethys) from early Middle Jurassic to Paleocene time, based on surface geology of eastern Pelagonia and the Vardar zone, biostratigraphy, and seismic-tomographic images of the mantle below the Central Hellenides

Authors: Rudolph Scherreiks[1], Marcelle Boudagher-Fadel[2]
Affiliations: Geologische Staatssammlung of the Bayerische Staatssammlung für Palaeontologie und Geologie, Germany[1], Professorial Research Fellow, Office of the Vice-Provost (Research), University College London, UK[2]
Orcid ids: 0000-0002-2777-1476[1], 0000-0002-2339-2444[2]
Contact e-mail: m.fadel@ucl.ac.uk
License information: This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY) 4.0 https://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.
Preprint statement: This article is a preprint and has not been peer-reviewed, under consideration and submitted to UCL Open: Environment Preprint for open peer review.
Funder: N/A
DOI: 10.14324/111.444/000078.v1
Preprint first posted online: 27 April 2021
Keywords: Adria, Pelagonia, Vardar, subduction and obduction, ocean lithosphere, tectono-stratigraphy, biostratigraphy, tomographic images, ophiolite, carbonate platforms, The Environment, Climate, Built environment
The closure of the Vardar ocean (the western domain of the northern Neotethys) from early Middle Jurassic to Paleocene time, based on surface geology of eastern Pelagonia and the Vardar zone, biostratigraphy, and seismic-tomographic images of the mantle below the Central Hellenides

Rudolph Scherreiks1 Marcelle BouDagher-Fadel2

1Geologische Staatssammlung of the Bayerische Staatssammlung für Palaeontologie und Geologie, Luisenstr. 37, 80333 Munich, Germany

2University College London, Office of the Vice-Provost (Research), 2 Taviton Street, WC 1 H OBT, London, UK

Abstract

Seismic tomographic images of the mantle below the Hellenides indicate that the Vardar ocean probably had a composite width of over 3000 kilometres. From surface geology we know that this ocean was initially located between two passive margins: Pelagonian Adria in the west and Serbo-Macedonian-Eurasia in the east. Pelagonia was covered by a carbonate platform that accumulated, during Late Triassic to Early Cretaceous time, where highly diversified carbonate sedimentary environments evolved and reacted to the adjacent, converging Vardar ocean plate. We conceive that on the east side of the Vardar ocean, a Cretaceous carbonate platform evolved from Aptian to Maastrichtian time in the forearc basin of the Vardar supra-subduction volcanic arc complex.

The closure of the Vardar ocean occurred in one episode of ophiolite obduction and in two episodes of intra-oceanic subduction.

1. During Middle Jurassic time a 1200-kilometre slab of west Vardar lithosphere subducted beneath the supra-subduction, “Eohellenic”, arc, while a 200-kilometre-wide slab obducted onto Pelagonia between Callovian and Valanginian time.

2. During Late Jurassic through Cretaceous time a 1700-kilometre-wide slab subducted beneath the evolving east Vardar-zone arc-complex. Pelagonia, the trailing edge of the subducting east-Vardar ocean slab, crashed and underthrust the Vardar arc complex during Paleocene time and ultimately crashed with Serbo-Macedonia. Since late Early Jurassic time, the Hellenides have moved about 3000 kilometres toward the northeast while the Atlantic Ocean spread.
Key Words Adria, Pelagonia, Vardar, subduction, obduction, tectono-stratigraphy, biostratigraphy, tomographic images, ophiolite, carbonate platforms, ocean lithosphere

Introduction

Relicts of oceanic lithosphere can be traced from the Dinarides through the Hellenides and Taurides. They bear witness to the once extensive northern Neotethys ocean (Fig 1) (Stampfli and Borel 2004; Schmid et al. 2008; Schmid et al. 2020). In this contribution, we shed new light on the palaeogeography and subduction of the Vardar branch of the Neotethys from Early Jurassic through early Palaeocene time, which we have gained from our research on the tectono-stratigraphy of the Vardar zone of Greek Macedonia and of the eastern Pelagonian zone of Northern Evvoia and the Northern Sporades (Fig. 1). This surface geology is aligned with seismic tomographic images that depict two perturbations in the mantle below the central Hellenides, that we interpret as two slabs of Vardar ocean lithosphere, which sank into the mantle during two episodes of subduction. We also show that two carbonate platforms evolved, one on each side of the Vardar ocean and they reacted to and were tectonically involved with the obduction, subduction and ultimate closure of the Vardar ocean.

A time-lapse reconstruction is presented of the convergence and subduction of the Vardar ocean from Early Jurassic through early Palaeocene time. We give answers to questions concerning the original width of the Vardar ocean and how closure took place and ended with Pelagonia’s collision with the Vardar Island-arc-complex and the detachment and subsidence of the Vardar ocean slabs into the mantle.

Palaeogeological Background

The Neotethys, Vardar zone and some nomenclature

In palaeogeographic reconstructions of the evolution of the Palaeotethys and Neotethys, Stampfli and Borel (2004) show that the northern Neotethys ocean opened as the Palaeotethys closed (fig. 2a): the Maliac ocean is a remnant of the Palaeotethys, which, through intra-oceanic subduction, becomes overthrust by the Vardar ocean at the western end of the northern Neotethys. Alternatively, the Vardar ocean can simply be envisioned to have opened as a western continuation of the Neotethys (Sengor and Natal’in (1996) in Hafkinscheid (2004)).
In an enlightening palaeogeographic reconstruction of the Mid-Late Jurassic Vardar ocean, shown in Schmid et al. (2020) the Vardar ocean has two eastward dipping, Intra-oceanic subduction zones and an arc complex (Fig. 2b). This model infers that the Vardar ocean existed from Early Mesozoic to Late Cretaceous time (in agreement with Sharp and Robertson 2006). Our research corroborates these plate-tectonic palaeogeographic interpretations which we have proceeded to investigate both spatially and temporally. Following Schmid et al. (2008) the present contribution supports the one-ocean concept, that the Vardar ophiolites were obducted westward over the Pelagonian-Korah zone of east Adria (Fig. 2b). For other models in which western Pelagonia had plate-tectonic involvement with an inferred Pindos ocean see Sharp and Robertson (2006). Our investigations, however, have been limited to eastern Pelagonia and the Vardar zone (Fig. 1).
Nomenclature

For nomenclatural orientation, “Vardar ocean” is the name of the western ocean domain of the northern Neotethys (Fig. 2b). We agree with Schmid et al. (2020) that “Vardar zone” (Fig. 2b) is not synonymous with “Vardar ocean”. In our opinion, the Vardar zone is not the “root” of Vardar-derived thrust sheets, as has been often suggested (Zimmerman and Ross 1976; Brown and Robertson 2004; Froitzheim et al. 2014).

Quite the contrary, as will be shown, the “Vardar zone” is where the last slab of the Vardar ocean subducted (Scherreiks and BouDagher-Fadel 2020a and 2020b) and probably corresponds to the “Sava suture zone” (Ustaszewski et al. 2010; Schmid et al. 2020).

The names of geo-tectonic sub-divisions of the Vardar zone used herein are after Kockel (1979).

The “Vardar zone” corresponds to the northwest-southeast striking belt (Fig. 1a) where remnants of island arc volcanic formations are found (Mercier, 1968; BeBien et al. 1994; Brown & Robertson 1994; Mercier and Vergely, 2002; Saccani et al. 2008; Sharp and Robertson 2006; Katrivanos 2013) and where easternmost Pelagonia is covered by Upper Cretaceous carbonates (Schmid et al. 2020).
We consider it important to use the term “ophiolite,” in the strict sense of the “Steinmann Trinity” (Bernoulli et al.), because there are oceanic formations in the study areas that although they are composed of basalt + radiolarite they are devoid of serpentinite and had been derived from tectonic environments unrelated to obduction, which will be shown. Furthermore, the term “mélange”, used herein, follows Hsü (1974) referring to tectonically produced polymictic fault-zone rocks as opposed to polymictic sedimentary deposits (see also Scherreiks 2000). The mélanges are associated with mylonitic S-C shear fabrics of subduction zones (Meneghini et al. 2009) like those found in the Vardar zone (Katrivanos et al. 2013).

The carbonate platforms of Adria and the Vardar zone

Following the afore said and our own research, Adria was the pedestal of a vast subsiding carbonate platform, of the marginal, foreland category (Kendall and Schlager 1981; Schlager 2000; Bosence 2005) that extended from the Alps (Fruth and Scherreiks 1982, Bosellini 1984) through Korab-Pelagonia and into the west Taurides (Flügel 1974, 1983; Scherreiks 2000) (Fig. 1, Fig. 2b) and across the western Tethys (BouDagher-Fadel and Bosence 2007). The platform evolved adjacent to the west side of the Vardar ocean during the Late Triassic through the
Early Jurassic from a cyclically alternating supratidal to a peritidal
domain (Scherreiks 2000; Bosence et al. 2009) and then responded with
subsidence and episodes of upheaval as continental Adria and the
Vardar ocean converged (Scherreiks et al. 2010, 2014, 2016). (Table 1a
documents biostratigraphic data concerning the Pelagonian carbonate
platform of Evvoia and the Northern Sporades, which will be referred to
in the text.)

In the Vardar zone at the east side of the Vardar ocean (Fig. 2b) one
finds the remnants of a carbonate platform that evolved during the
Cretaceous, most probably on the forearc margin of the Vardar arc
(Fig. 2b) whose evolution terminated during the Paleocene (Mercier
1968; Mercier and Vergely 2002). The inevitable crash between
Pelagonia and the Vardar zone (Fig. 2b) was a crash between two
Cretaceous platforms (see Discussion). (Significant biostratigraphic data
concerning carbonate platform of the Vardar zone are documented in
Tables 1b and 1c and will referred to).

The Pelagonian carbonate platform and its involvement in the
demise of the Vardar ocean
The Vardar ocean existed during the Middle to Late Triassic,
substantiated by radiolarians and pillow basalt found in ophiolite
occurrences in our study area in Evvoia (Danelian and Robertson 2001;
Chiari and Marcucci 2003; Gingins and Schauner 2005; Gawlick et al.
2008; Scherreiks et al. 2010; Chiari et al. 2012) (Table 1a11.1). Initially,
the Late Triassic and Early Jurassic carbonate platform evolved from a
cyclically alternating supratidal to peritidal domain (Scherreiks 2000;
Bosence et al. 2009) and then began sinking, presumably responding
with subsidence as Adria converged with the Vardar oceanic plate
(Scherreiks et al. 2010). The postulated beginning of Intra-oceanic
obduction was around Toarcian to Bajocian time (180–170 Ma), based
on the ages of amphibolites found in the “metamorphic sole” of
subduction-zone mélanges (Roddick et al. 1979; Spray and Roddick
1980; Spray et al. 1984). The platform subsided during the Middle
Jurassic, verified by ever deepening carbonate facies (Scherreiks 2000),
and then became emergent during Callovian time, verified by bauxite
deposits (Fig. 4a) (Scherreiks et al. 2016). The age of this Callovian
upheaval has been verified with Bathonian foraminifera in the limestones
below, and Oxfordian foraminifera above the bauxite crusts (Table 1a 5
and 6) (ibid.). The “Callovian event” has been attributed to plate tectonic
stress that affected the entire Mediterranean region (Meléndez et al.
2007). An Oxfordian transgression re-established shallow marine
environments which generated a Tethys-wide reef facies that extended
from the Alps to Asia and in the Hellenides is characterised by the
demosponge, *Cladocoropsis mirabilis* Felix (Flügel 1974; Scherreiks 2000) (Table 1a 7 and 8). Rapid platform subsidence and drowning below the CCD occurred during Tithonian-Berriasian time, verified by radiolarian cherts (Baumgartner and Bernoulli, 1976). The final ophiolite emplacement is estimated to have occurred in Valanginian time, in Evvoia, after flysch-like sedimentation had been shut off by the obduction (Scherreiks 2000; Scherreiks et al. 2010; Scherreiks et al. 2014). The obduction was followed by a period of ophiolite erosion and a subsequent gradual, widespread, transgression of marine conglomerate in Evvoia and across the Pelagonian zone during Early cretaceous time (Scherreiks 2000; Fazzuoli et al. 2008; Photiades et al. 2018) (Table 1a 9).

Palaeogeography of the Vardar ocean decerned from seismic tomographic images of the mantle below the Hellenides

Van Hinsbergen and others (2005) recognised two separate and distinct perturbations in tomographic images as probable Neotethys slabs.

For our investigations, we have enlarged the tomographic images of the areas below the Hellenides and have decerned that there are two slabs (Fig. 3a-c). To check this out, we looked further eastwards to the
Arabian Sea (Fig. 3d) and have corroborated that two slabs of oceanic lithosphere have subducted there also. We have interpreted the perturbations beneath Hellenides as sunken Vardar ocean lithosphere and are of the opinion that the images verify two episodes of subduction (Scherreiks and BouDagher-Fadel 2020a) (Fig. 3c) (see Discussion and conclusions).

The study areas

Evvoia and Northern Sporades

Ophiolites and Platforms

Examples of obducted ophiolite s. str. occur in the study areas of northern Evvoia (Fig. 4a) (Scherreiks 2000; Scherreiks et al. 2014) and are found throughout the Korab-Pelagonian zone (Fig. 1). They lie, tectonically emplaced, together with mélange on top of Upper Jurassic and Lower Cretaceous carbonate platform rocks (Jacobshagen et al. 1976; Jacobshagen 1986). The ophiolites are erosional remnants that have been postulated to be parts of a single obducted ophiolite sheet that was emplaced during the Late Jurassic to Early Cretaceous, an age which classifies it as “Eohellenic” after Jacobshagen et al. (1976). The onetime ophiolite sheet is considered to have had a width of at least 200km - when judged from the width of the ophiolite outcrops on geologic maps (Gawlick et al. 2008; Schmid et al., 2020) (Fig. 1).

The Northern Sporades are devoid of serpentinite. The ophiolite sheet including large parts of the Pelagonian substrate had been removed by erosion during Early Cretaceous time (Fig. 5). The eroded surface of Jurassic and Triassic platform carbonates is covered by a sheet of mélange composed of meta-basalt and radiolarian chert which is chaotically mixed with carbonate breccia and mylonitic phyllonites (Scherreiks and BouDagher-Fadel 2020a) (Fig. 4a and Fig. 5). Slices of Cretaceous and Paleocene platform carbonates of reefal origins are tectonically incorporated in the mélange (Table 1a 10-10.3). The Cretaceous carbonate platform successions of Alonnisos and Skopelos overlie the mélange. In corroboration with Kelepertsis (1974) we suggest that the Cretaceous and Paleocene carbonates of the northern Sporades are of Vardar zone origin, which will be expanded upon in the Discussion and Conclusions. The Cretaceous carbonate platform and its mélange substrate, we suggest, correlate with an analogically similar succession in the Almopias sub-zone (Fig. 4a-b).
The Vardar zone

West Almopias and its tectonic contact with Pelagonia

Sheared Eohellenic ophiolite occurs on top of Pelagonian carbonates in contact with disrupted Cretaceous limestones (Table 1b 1 and 2), along the western border of the Vardar zone, for example near Panagitsa and Arnissa Fig. 6) (Mercier and Vergely 1988) and southwards near Pyrgi-Kato Grammatiko and west of the Vermion mountains (Georgiadis et al. 2016) (Fig. 6). West verging imbricated thrust faults characterise this western boundary of the Vardar zone, from the Dinarides through the Hellenides (in Jacobshagen (1986) from Mercier (1973), Mercier and Vergely (1979)). The base of the imbricates is Eohellenic ophiolite and the Triassic-Jurassic carbonate platform of the Pelagonian zone which is covered by disrupted ophiolite followed by schistose pyroclastic units interleaved with slices of radiolarian cherts, volcanlastic and chloritic marble layers. This tectonic transition between Pelagonia and the western edge of the Vardar zone is shown by Sharp and Robertson (2006) in the Arnissa area (Fig. 6): a ~500-metre-thick succession of imbricated ophiolite mélange. This succession is topped off by limestone debris with Rudists and Planktonic foraminifera, *Globotruncana* (Mercier and Vergely 1988) (Table 1b 3) (Plate 1). In agreement with these
observations, we underscore that the contact between the Vardar and Pelagonian zone is a thrust-fault-zone (see Discussion). Although
Cretaceous carbonates have been supposed to *transgressively* overlie laterite and serpentinite (Mercier and Vergely 1988; Sharp and Robertson 2006; Photiades et al. 2018), we are of the opinion that the inferred transgressional conglomerates are cataclasites (Plate 2a-b) and that orthoconglomerates (Friedman 2003) that could substantiate a marine transgression have not been verified (see Discussion and conclusions). Furthermore, the Cretaceous limestones of the Vardar zone are in tectonic contact with the subjacent ophiolite even where laterite is found at the contacts. The circumstances here are analogical to the Northern Sporades where a *sedimentary* contact of the Cretaceous Carbonates with its original substrate is nowhere to be found (Scherreiks and BouDagher-Fadel 2020a).

Tectonic windows in west Almopias

Serpentinite and ophiolite-carbonate mélange crop out, as tectonic windows, through the Cretaceous limestone cover along a narrow, elongated zone of north-south striking faults, extending from Kerassia-Karydia-Kedronas (Mercier and Vergely 1972; 1988) and to Ano Grammatiko (Sacciani et al. 2008; Georgiadis et al. 2016) (Fig. 6). Extensive exposures consist of “conglomeratic” rocks (Mercier and Vergely 1988), which in our opinion are cataclasites (see Discussion). The “conglomeratic” rocks contain Triassic and Jurassic carbonates as well as limestones ranging in age from Cenomanian to Turonian (Table 1b2) and overlie Pelagonian serpentinite (ibid.). Near Nisi and Karydia (Fig. 6) these cataclasites (Plate 2a-b) occur below Campanian limestone (Table 1b 4) (Plate 1). At its base, this succession contains olistolith marbles of Triassic-Jurassic age and overlie white micaceous Triassic marbles in suggested *transgressive* contact (ibid). We dispute a transgressional origin of the Kedronas-Nisi “conglomerate” (see discussion on pseudo-conglomerates). The tectonic windows exposing underthrust Pelagonian ophiolite rocks can be followed in west Almopias from the north near Karydia to the Vermion area (Georgiadis et al., 2016) (Fig. 6, see section B-B’).

Pelagonian ophiolite exposures of central Almopias

An extensive imbricated belt of ophiolite mélange some 50 kilometres long and 5-10 kilometres wide can be traced from the Lyki-Klissochori area (Mercier and Vergely 1984; 1988) to the Naousa and Veria areas (Fig. 6) (Saccani et al. 2008; 2015; Georgiadis et al. 2016). The mélange is interleaved with slices of marble and Jurassic carbonates, which we agree, are of Korab-Pelagonia origin (Bortolotti et al 2013; Georgiadis et al. 2016) (Table 1b 6 and 7-7.2). The carbonates contain an Oxfordian-Kimmeridgian reefal fauna, including *Cladocoropsis* sp. of Late Jurassic age.
age (Mercier and Vergely 1984). As pointed out above, this is a typical Kimmeridgian-Tithonian reef facies of the Pelagonian zone (Scherreiks 2000) (Table 1a 7-8) that had been overthrust by Eohellenic ophiolite during the Early Cretaceous. In the Vardar zone, the Pelagonian ophiolites are locally interleaved with sericitized basalt schist (Lyki) (see Geochemistry) and are in underthrust position beneath “conglomeratic”, ophiolitic mélange and upper Cretaceous carbonates (north-east of Margarita, Fig. 6) (Table 1b 7).

In accord with the afore cited researchers and the described geology, we support the opinion that the ophiolites and Upper Jurassic carbonates found in the west and central Vardar sub-zones are tectonically inherited from underthrust Pelagonia (Fig. 4b).

Eastern Almopias and Paikon units

A noteworthy difference between the eastern and western units of the Vardar zone is that the eastern Almopias and the Paikon units are devoid of serpentinite which we corroborate from Tranos et al., 2007. Serpentinite, however, probably exists at depth but is not exposed (Fig. 4b), as it is further north in an area known as Ano Garefi, where serpentinized peridotite is exposed below basalt (Saccani et al. 2015). The mélanges of the Nea zoi-Vryssi-Meglenitsa and Krania units (Fig. 4b and Fig. 6) are composed of dolerite, pillow basalt and tuff and contain upper Jurassic-lower Cretaceous radiolarite (Mercier and Vergely 1984), with a relict Cretaceous cover (Table 1c 1.-1.2). Slices of Triassic lavas and radiolarites (Stais et al. 1990) (Table 1c 3 and 4) and upper Cretaceous arenites are also incorporated into the foliated matrix of the mélange of the Krania-Vryssi units (Saccani et al. 2015). The “ophiolite related” mafic units, “ophiolite nappe” and “Meglenitsa Ophiolite”, reported as ophiolite in Sharp and Robertson 2006 (from Sharp 1994 and Sharp & Robertson 1998) in our opinion are not ophiolites s. str. but consist of ocean floor or arc basaltic rocks (see Geochemistry).

The Paikon antiform, a Pelagonian window: Katrivanos et al. 2013

The Theodoraki limestone is the youngest formation of the Paikon antiform (Katrivanos et al. 2013). The limestone is part of the Cretaceous carbonate platform that covers the entire Vardar zone, and which is composed of a wide range of neritic to reefal facies (Table 1b and Table 1c Theodoraki unit). The platform is in tectonic contact with a pile-up of SW dipping slices of Theodoraki limestones and slices of volcano-sedimentary rocks including radiolarites, tuffites and lava, and Triassic-Jurassic Marble and schist of Pelagonian origin (Mercier and Vergely 2002). Katrivanos and others (2013) corroborate that the tectono-stratigraphic sequence is composed of volcano-clastic rocks
together with limestones of Middle to Late Jurassic age, based on micro
and macro-faunas including *Cladocoropsis mirabilis* (Griva-Kastaneri
formation Fig. 4b, Fig. 6) (Table 1c Griva-Khromni units). The volcano-
sedimentary slices are on top of Triassic-Jurassic Gandatch marbles
and schists (Fig. 6). All the volcanic material of this series is *strongly
mylonitized in discrete, narrow shear zones* related to mylonitic foliation
(Katriranos et al. 2013). The carbonate rocks are mylonitized, near the
contacts with tectonically overlying volcano-sedimentary slices e.g., at
Kastaneri (ibid). Our investigations corroborate the above observations,
which lead us to interpret the volcano-sedimentary formations in the
substrate of the Theodoraki limestone as a composite *allochthonous
mélange complex* in which slices of volcanic and sedimentary rock-units
can be individually distinguished.

On the contrary to the above, the Paikon unit has been depicted (Sharp
and Robertson 1994) to consist of a contiguous sedimentary,
stratigraphic, succession extending from the Triassic to Cretaceous time
only interrupted by an Oxfordian and Cenomanian unconformity, which
we dispute.

We share the opinion that the Paikon is an antiform and a Pelagonian
tectonic window (Katriranos et al. 2013), and that the Paikon unit of the
Vardar zone was most probably part of a volcanic island arc complex
(Mercier et al. 1975; Mercier et al. 2002; BeBien et al. 1994; Brown &
Robertson 2004; Mercier and Vergely 2002; Saccani et al. 2015, Schmid
et al. 2020). Our envisioned island arc scenario, like others, evolved as
the eastern Vardar ocean subducted north-eastwards beneath the
margin of the European continent, which initiated subduction-related arc
volcanism (Mercier and Vergely 2002; Brown and Robertson, 2004;
Saccani et al., 2015). This was accompanied by back-arc spreading
(Hafkinscheid, 2004; Schmid et al. 2020), represented by the Guevgueli
ophiolite complex (Fig. 4b) (Anders et al. 2005; Saccanni et al. 2008b;

Discussion and conclusions

Geochemistry

Meta-basalts from the Vardar zone and from northern Evvoia have been
analysed for their major, minor and trace element contents, and some
previous analyses are shown from the Northern Sporades (Scherreiks
and BouDagher-Fadel 2020a). The analytical results are in Tables 2a
and 2b. Rare-Earth (REE) plots and ternary discrimination diagrams
(Fig. 7) have been drafted for the purpose of ascertaining basalt origins
Two serpentinized peridotites associated with basalts and radiolarian cherts from Pelagonian ophiolites of Evvoia were previously analysed (Scherreiks and BouDagher-Fadel 2020a) (Table 2b). The meta-basalts of the Vardar zone and the Northern Sporades occur in mélanges and they are sheared and sericitized and strongly weathered, which may have caused contaminations with adjacent rocks, making unambiguous differentiation between MORB and island IAB additionally more enigmatic than it intrinsically is anyway (Perfit et al. 1980). None of the analyses (Table 2a) have abnormal Cr or Ni contents which excludes serpentinite contamination (compare Cr and Ni Table 2b samples 2-3).

The REE plots are typical for basalts (Pearce and Cann 1973; Kay and Hubbard 1978; Perfit et al. 1980; Hooper and Hawkesworth 1993) (Fig, 6a and 6b), depicting light REE (LREE) enhancement associated with IABs, and flat LREE-depleted patterns of probable MORB origin. An almost identical array of REE plots have been ascertained for the
Northern Sporades where the present authors had drawn the conclusion that MORBs and IABs had been tectonically mixed in the mélange of an extensive thrust-fault zone (Fig. 7) (Scherreiks and BouDagher-Fadel 2020a). As in the Northern Sporades, the REE-plots drafted for the Vardar zone indicate the side by side presence of both IAB and MORB (Fig. 7a-b). Discrimination diagrams (Fig. 7c) also indicate the ambiguous situation of determining that MORBs for samples in one diagram correspond to IABs in another. Following Perfit and others (1980) we have additionally checked out that according to Perfit (ibid) there are distinguishing differences in potassium, titanium, and total iron wt.% concentrations in IABs and MORBs: MORBs having <0.25 K2O, IAB having >0.25 K2O; IAB having <1.2 TiO2, and >6-15 total Fe. The results of this query, using data from tables 2a and 2b, it appears that most of our samples are IABs but there are numerous ambiguities which, presumably, are caused by tectonic mélange mixing.

The analyses of the basalts from the Eohellenic ophiolite of Evvoia and those of the Elias complex are incorporated in the REE and AFM diagrams (Fig. 7a and c) (Table 2b) and they indicate MORB and IAB affinities.

The composite tectono-Stratigraphy of eastern Pelagonia and the Vardar zone in context with the afore related geology

Pelagonia consists of a Palaeozoic-Middle Triassic basement covered by a carbonate platform over which a 200 km-wide ophiolite sheet of west Vardar ocean lithosphere, had been obducted (Fig. 8a, b, c). The 1700 km-wide eastern Vardar ocean subducted beneath the Vardar zone (vz) during Late Jurassic through Cretaceous time (Fig. 8c). Figure 8a - b indicates that Pelagonia together with obducted Eohellenic ophiolite crashed with the Vardar zone and underthrust the Cretaceous-carbonate-platform and its volcano-sedimentary substrate (Fig. 8 b). As Pelagonia continued to advance it underthrust the Guevgueli complex and crashed with Serbo-Macedonia (Fig. 8b, c).

Major deformations

Three major episodes of tectonic deformation, D1-D3, affected the Pelagonian and Vardar zones; each dominated by a major time-transgressive thrust fault complex (Fig. 8a-b). (Our D1-D3 indices do not correspond with those of previous researchers (Mercier and Vergely 2002; Kilias et al. 2010; Katrivanos et al. 2013).
Deformation D1, is Eohellenic (Fig. 8a), involving the westward obduction of the Eohellenic (west Vardar ocean) ophiolite onto eastern Pelagonia (Fig. 8c).

Deformation D2: Pelagonia, the trailing edge of the eastward subducting Vardar plate, crashed with and underthrust the Vardar arc, causing shearing, mylonitisation, and imbrication between the overriding
Cretaceous carbonate platform including its volcano-sedimentary substrate. Greenschist and HP/LT metamorphism described by Katrivanous et al. 2013 can be attributed to D2. Deformation D3 corresponds to the compression caused by the crash of the Pelagonian plate with Serbo-Macedonia, which caused folding in the Vardar and Pelagonian zones of which the Paikon antiform is the most prominent (Fig. 8b). Subsequently, shear-stress produced the youngest thrust faults in the flanks of the Paikon antiform (D3 in Fig. 8b) and most probably rejuvenated older faults, including numerous subordinate imbrication thrusts (Fig. 4b), described in Mercier and Vergely (2002), Kilias et al. (2010) and Katrivanos et al. (2013).

Pseudo conglomeratic mélange of Kedronas, Nisi and Karydia

The breccio-conglomeratic, cataclastic rock complex that contains abundant rounded clasts occurs incorporated in an extensive fault zone mélange in the west Almopias unit between Karydia and Ano Grammatiko (Plate 2a-b) (Fig. 6 pseudo conglomeratic mélange). In the Nisi-Karydia area the cataclasites are in tectonic contact with Campanian limestones (Plate 1) (Table 1b 4.1) on top and Pelagonian ophiolite at the base. We regard the cataclasites as matrix supported parabreccias composed of poorly sorted >2mm, rounded to angular clasts (Plate 2a-b). The clasts either consist predominantly of marbles, elongated pieces of sericitic calc-schists and dark micritic limestones (Plate 2b) or are chaotic mixtures of carbonate and ophiolite clasts (Plate 2a). Viewed under the microscope, the matrix is a chaotic breccia of calcitic grains that are not bound by interstitial pore cement (Bathurst 1976) but by insular patches of aggrading neomorphic sparry calcites that had grown amid the much smaller angular granules of the matrix (Plate 2c, d, e). Crushed neomorphic calcite occurs in the matrix inherited from earlier stages of shearing. The neomorphic calcite, unlike cement, exhibits irregular boundaries and palimpsest, relic-matrix texture (Plate 2 d-e). The neomorphic calcites exhibit residual stress, indicated by crossing twins, stopping twins, twin thickening, and bending, which appears in low temperature stress regimes below 200 °C. (Burkhard 1993; Chen et al, 2011). Neomorphism had most likely taken place in a dry sub-metamorphic environment (Folk 1965 in Bathurst 1976). It is suggested that the larger components underwent rounding and grain-reduction by granulation from the decimetre to centimetre scale to microscopic micron scale, which is not unusual in tectonic breccias in
which the fragments may be worn down and rounded by tectonic
We dispute that this rock complex had a transgressional origin (Mercier
and Vergely 1988; and Mercier 1966 in Sharp and Robertson 2006)
because it does not display the most important characteristics that
marine conglomerates should have: clast-clast support and diagenetic
cement (Bathurst 1976; Friedman 2006). On the contrary the clasts are
matrix supported and the grains have not been diagenetically cemented.
In our opinion the “parabreccio-conglomerate” formed as Pelagonia
underthrust the Vardar zone during Paleocene time (D2 above).

The crash of two Cretaceous carbonate platforms
It should be taken into consideration that some remnants of the well
documented Cretaceous Pelagonian carbonate platform (Fig. 8a), may
have been subducted (“piggy-backed”) beneath the Cretaceous
carbonate platform of west Almopias, at the latest during Paleocene
time, and thus inherited Pelagonian-orthoconglomerates could occur in
the mélanges beneath the Vardar zone (e.g., Vermion: Photiades et al.
2018).

New Palaeogeography
From the previous chapters and from seismic tomography it is
postulated that the Vardar ocean subducted along two subduction zones
(Fig. 9a). The western intra-oceanic subduction zone evolved about
Toarcian to Aalenian time, based on radiometric ages of amphibolites in
sub-ophiolite mélanges, and continued to subduct through the Middle
Jurassic verified by late Middle Jurassic radiolarians in the sub-ophiolite
mélange in Evvoia (Danelian and Robertson 2001; Gingins and
Schauener 2005 (Scherreiks et al. et al. 2014) (Table 1a 11.2 and 12). A supra-
subduction volcanic arc evolved during the Middle Jurassic, documented
by the Elias complex of northern Evvoia (Fig. 4a) which presumably was
part of a more extensive supra-subduction “Eohellenic arc” (Fig. 9a)
(ibid.). The beginning of the Eohellenic obduction, is suggested to have
begun during Bathonian time together with the Callovian upheaval
(Meléndez et al. 2007) and the eastward subduction of the eastern
Vardar ocean (Fig. 9b3). The Vardar, supra-subduction, volcanic island
arc and the spreading Guevgueli back arc ophiolite complex evolved
during (Middle?) Late Jurassic and Cretaceous time. We envisage a
Paikon forearc basin, rimmed by an accretionary wedge like that shown
in Saccani et al. (2008b) in which the basin floor was covered by
(volcanoclastic) basalt without carbonates during the lower Middle Jurassic. To our knowledge, a Jurassic carbonate platform did not evolve on the east side of the Vardar ocean. Instead, we suggest that volcanoclastic deposits accumulated on the flanks of the Vardar volcanic arc and became the substrate of carbonate accumulation beginning in Aptian time. Investigations of the Guevgueli back arc basin have not disclosed relicts of a Mesozoic carbonate platform (Saccani et al. 2008b).

The Cretaceous forearc carbonate platform of the Vardar zone
The Cretaceous Vardar-zone carbonate platform is envisaged to have evolved over the late Jurassic-early Cretaceous volcanoclastic substrate of the forearc basin (Fig. 9a) (Saccani et al. 2008b).
The earliest recorded Cretaceous limestones in the Vardar zone are of Aptian age (Table 1b4.2, Table 1c6.1). The bio facies indicate a reefal to inner neritic environment having had depths of between 10 and 50m (BouDagher-Fadel 2018a). These limestones are in the west Almopias sub-zone (Fig. 4b) and may have been deposited near or on the accretionary wedge of the forearc basin (Saccani et al. 2008b). The verified bio facies indicate that patch reef and neritic environments existed side by side through Cenomanian, Santonian, Campanian, and Maastrichtian time (Table 1b West Almopias) (Plate 1). The deeper neritic platform facies occur eastwards in the central and east Almopias sub zones, ranging in age from the Cenomanian to Maastrichtian (Table 1b-c Central and East Almopias). The bio stratigraphic succession in the Theodoraki limestone formation begins with Cenomanian/Turonian reef facies that may represent a fringing reef along the outer slopes of the arc. Inner neritic facies deepen upwards, from the Campanian to Maastrichtian times (Table 1c 5 Theodoraki unit). Late Maastrichtian flysch signals the demise of the Cretaceous carbonate platform of the Vardar zone.

From the afore said, a tentative picture of the platform-architecture can be discerned: it was a subsiding environment in which about 500 m of carbonates accumulated (“carbonate factory” Schlager 2000) during about 60Ma between Aptian and Maastrichtian time (Mercier and Vergely 1984, 1988). Reefs evolved during Early Cretaceous along an outer western accretionary wedge and inner eastern high where fringing reefs on the outer slopes of the Paikon volcanic arc interdigitated outer neritic carbonate facie in the central basin.

Seismic tomographic images of the mantle below the Hellenides

We have interpreted the perturbations beneath Hellenides as sunken Vardar ocean lithosphere and are of the opinion that the images verify two episodes of subduction (Scherreiks and BouDagher-Fadel 2020a) (Fig. 3c).

The vertical section (Fig. 3c) shows that the leading edges of each slab has subsided to a depth of about 2000 kilometres. Presently, the trailing edge of the western slab (x in Fig. 3c) is about 900 kilometres below the Earth’s surface and the trailing edge of slab (y) is about 400 kilometres below the surface. These are the depths to which the slabs have sunken since their breakoffs. In estimating the width of a slab, however, one must consider that a subsiding lithospheric plate certainly undergoes compression and deformation which can make width-estimates...
inaccurate (Fig 3e). The seismic tomographic images are, nevertheless, presently the best possible way to estimate the onetime width of the subducted oceanic lithosphere which we estimate to have been about 3000 kilometres (determined by adding together the lengths of the slabs \((x + y) \sim 1200 + \sim 1700\) and adding, to that sum, the width of the obducted Eohellenic ophiolite sheet which has been assumed to be about \(\sim 200\) kilometres (Fig. 8c)). However, \(3100\) km is the composite width, not necessarily the surface width that the Vardar ocean had at any one time. We do not know when the ocean ridge stopped spreading: subduction and ocean spreading at the ocean ridge could have taken place simultaneously.

The western slab \((x)\) is supposed to have broken off and began sinking after the Eohellenic ophiolite had been emplaced during Valanginian time. The eastern Almopias slab \((y)\) is supposed to have broken off after Pelagonia crashed and underthrust the Vardar-zone carbonate platform and volcanic arc complex.

Seismic tomographic model

Our model (Fig. 9) postulates that the Vardar ocean was about 3000 km wide and bordered on Adria in the west. This means that both the microplate Adria and the vaguely attached African plate, were situated 3000 km further southwest during Early Jurassic time as the Atlantic Ocean and the Alpine Tethys began spreading (e.g., Schmid et al. 2008; Scherreiks et al. 2010). This infers that Pelagonia, the eastern edge of Adria, moved about 3000 km northeast towards the European continent (Fig. 9b) while the Atlantic spread.

The \(~3000\) km wide Vardar ocean is supposed to have subducted/obducted, between \(~\text{Sinemurian-Aalenian time (} \sim 190-175 \text{ Ma) and Paleocene time (} \sim 65 \text{ Ma)}\), a timespan of \(190-65 = 125 \text{ Ma}; 175-65 = 110 \text{ Ma}\). Subduction rates of the oceanic slabs are estimated to range from about \(3 \text{ cm/year (= 30km/1Ma)}\) in the upper mantle to about \(1 \text{ cm/year in the lower mantle (Norton 1999)}\). Simple calculations show that at a rate of \(30 \text{ km/1Ma}, \text{ a } 3300 \text{ km wide ocean would subduct in } 110 \text{ Ma}; \text{ and a } 3000 \text{ km wide ocean could subduct in } 110 \text{ Ma at a rate of } \sim 2.7 \text{ cm/a.}\)

In our example, we also consider that the trailing edge of Slab X sank 900 km since breaking off after Valanginian time, and the trailing edge of slab Y sank about 400 km since its breakoff in the \(~\text{Paleocene}\).

Sinking rates are lower in the mantle below 300–500 km, and in the lower mantle slab subsidence eventually approaches zero (Lallemand...
and Funiciello 2009; Ichikawa et al. 2016). We have previously estimated (Schreers and BouDagher-Fadel 2020a, 2020b) that in using an average subsidence rate of 0.68 cm/year, one arrives at a Hauterivian break-off date for slab X (900 km/6.8 km/Ma ~132 Ma), and Late Paleocene as the break-off time of slab Y (400 km/6.8 km/Ma ~59 Ma), which we believe corresponds to the known facts and is well in the range of plausibility.

Summary

The demise of the once over 3000-kilometre-wide Vardar ocean has been reconstructed from field investigations of its remnants in its onetime peripheries, and from seismic tomographic images of its remnants in the Mantle below the Central Hellenides. On its southwestern side the Vardar ocean bordered on the Pelagonian-Adriatic plate which was covered by a vast carbonate platform (BouDagher-Fadel and Bosence 2007) that evolved from a peritidal realm during Norian-Sinemurian- to a drowned platform during Tithonian-Berriasian-time. In the northeast the Vardar ocean bordered on Serbo-Macedonia of the European plate, where, during the Late Jurassic a supra-subduction volcanic island arc and back-arc complex emerged. A forearc reef and a shallow marine carbonate platform accumulated on top of a Jurassic-Early Cretaceous volcano-clastic substrate from about Aptian through Maastrichtian time.

The closure of the Vardar ocean occurred in one episode of ophiolite obduction and two episodes of intra-oceanic subduction.

1. During Middle Jurassic time a 1200-kilometre slab of west Vardar lithosphere subducted eastwards beneath the “Eohellenic”, arc, while a 200-kilometre-wide slab obducted westwards onto Pelagonia between Callovian and Valanginian time.

2. A 1700-kilometre-wide slab of east Vardar lithosphere subducted eastwards beneath the Vardar-zone arc-complex during Late Jurassic through Cretaceous time while Pelagonia underthrust the Cretaceous carbonate platform during the Paleocene.

In the greater framework of plate tectonics, the subduction of the Vardar ocean occurred simultaneously with the spreading of the Atlantic Ocean and the opening of the Alpine Tethys, while the Hellenides moved about 3000 kilometres toward the northeast.

In the light of the present contribution, future research concerning the evolution of the Cretaceous carbonate platform of the Vardar zone could
advance our knowledge of the facies distributions and architecture of the Paikon fore arc basin. Another point of interest is the seismic tomography and the demise of the Guevgueli back arc since Paleocene time, which is also quite obscure.

Acknowledgements

University College London:
We are grateful to the Office of the Vice-Provost (Research, Innovation, and Global Engagement), especially Prof. David Price, for helping and facilitating our research.

The Bayerische Staatssammlung für Palaeontologie und Geologie in Munich, Germany, is thanked for their support during this research which is part of a 20-year research project. We thank ACTIVATION LABORATORIES LTD., Ancaster, Ontario, for carrying out the geochemical analyses. Special thanks are given Michael Born, Bonn, Germany for the preparation of thin sections.

References

Ecl Geol Helv 69:601–626

Chiari, M., Marcucci, M. (2003) Triassic and Jurassic radiolarian assemblages from the siliceous sediments associated with pillow lavas in the Argolis Peninsula (Greece). Abstr Tenth Meeting International Association Radiolarian Palaeontologists, Lausanne: 40

Proceed.14th Intern. Congr. Thessaloniki

transition. XXIII Jornadas de la Sociedad Espanola de Paleontologia
(Caravaca de la Cruz, Libro de Resumenes:139–140

Meneghini, F., Marroni, M., Moorw, J.C., Pandolfi, L., Rowe, C.D. (2009) The processes of underthrusting and underplating in the geologic record: structural diversity between the Franciscan Complex (California), the Kodiak Complex (Alaska) and the Internal Ligurian Units (Italy). Geol. J. 44: 126–152

Roddick, J.C., Cameron, W.A., Smith, A.G. (1979) Permo-Triassic and Jurassic
40Ar/39Ar ages from Greek ophiolites and associated rocks. Nature 279:788–790
Saccanni, E., Photiades, A., Santato, A., Zeda, O. (2008a) New evidence for supra-
subduction zone ophiolites in the Vardar zone of northern Greece:
Implications for the tectonic-magmatic evolution of the Vardar ocean basin
Ofioliti, 2008, 33 (1), 65-85
Saccanni, E., Bortolotti, V., Marroni, M., Pandolfi, L., Photiades, A., Principi, G.
(2008b) The Jurassic association of backarc basin ophiolites and calc-alkaline
volcanics in the Guevgueli complex (Northern Greece): Implications for the
evolution of the Vardar Zone. Ofioliti 33 (2), 209-227
Saccani, E., Chiari, M., Bortolotti, V., Photiades, A., Principi, G. (2015) Geochemistry
of volcanic and subvolcanic rocks and biostratigraphy on radiolarian cherts
from the Almopias ophiolites and Paikon unit (Western Vardar, Greece).
tectonics, eustacy, and an advancing ophiolite nappe (Jurassic, NE-Evvoia,
Greece). Terra Nostra 98: 72-73
Scherreiks, R. (2000) Platform margin and oceanic sedimentation in a divergent and
convergent plate setting (Jurassic, Pelagonian Zone, NE Evvoia, Greece). Int
J Earth Sci 89:90–107
Scherreiks, R., Bosence, D., BouDagher-Fadel, M., Meléndez, G., Baumgartner,
P.O. (2010) Evolution of the Pelagonian carbonate platform complex and the
adjacent oceanic realm in response to plate tectonic forcing (Late Triassic and
Scherreiks, R., Meléndez, G., Fermeli, G., Baumgartner, P.O., BouDagher-Fadel, M.,
Bosence, D. (2011) A time-transgressive ophiolite-platform collision (late
Middle Jurassic to Early Cretaceous, Pelagonian zone, Evvoia, Greece).
Fragile Earth: GV-GSA meeting, LMU München Paper 19-9
Stratigraphy and tectonics of a time-transgressive ophiolite obduction onto the
eastern margin of the Pelagonian platform from Late Bathonian until
Valanginian time, exemplified in northern Evvoia, Greece, Int. J. Earth Sci.,
103, 2191-2216.
Scherreiks, R., Meléndez, G., BouDagher-Fadel, M., Fermeli, G., Bosence, D.
(2016) The Callovian unconformity and the ophiolite obduction onto the
Pelagonian carbonate platform of the Internal Hellenides. Bulletin of the
Congress, Thessaloniki, May 2016
Scherreiks, R., BouDagher-Fadel, M. (2020a) Tectono-stratigraphic correlations
between Northern Evvoia, Skopelos and Alonnisos, and the postulated
collision of the Pelagonian carbonate platform with the Paikon forearc basin
(Pelagonian-Vardar zones, Internal Hellenides, Greece). UCL Open
Scherreiks, R., BouDagher-Fadel, M. (2020b) The closure of the Neotethys in two
episodes: as a result of Late Jurassic to Early Cretaceous obduction and
Early Paleocene collision, based on surface geology and tomographic models
(Internal Hellenides, Greece) Conference: Tectonics, geodynamics, and paleogeography of the Alpine-Himalayan orogen from the Earth’s mantle to its surface at: Utrecht virtual oral presentation 26.08.2020 Session 3.3 ID 112

Figure Captions

Fig. 1: Neotethys lithosphere The oceanic lithosphere of the Dinarides through the Hellenides and Taurides, and beyond, represents remnants of the northern branch of the Neotethys (following Stampfli and Borel 2004, and numerous researchers in Schmid et al. 2020). Our study areas are in Evvoia and the Northern Sporades, and in the “Vardar zone” of Greek Macedonia. Fieldwork was carried out in the Vardar zone and Northern Evvoia in September and October 2020 and Evvoia and the Northern Sporades in previous years

Fig. 2 Palaeogeography and evolution of the Vardar ocean (a) altered after Stampfli and Borel, 2004; (b) altered after Schmid et. al. 2008; Gallhofer et al 2017 and Van Hinsbergen et al. 2019, in Schmid et al, 2020)
a) The Vardar domain of the Northern Tethys ocean evolved out of the Maliac and Paleotethys in Permo-Triassic time. b) The Vardar ocean was situated between continental Adria (including Korab-Pelagonia) and Serbo-Macedonian Europe. The palaeogeography infers that early Middle Jurassic intra-oceanic subduction led the obduction of the Eohellenic ophiolite onto eastern Pelagonia. Subsequently, Vardar ocean lithosphere subducted beneath the Paikon island arc and led to the crash of eastern Pelagonia with the island arc. See text.

Fig. 3 Seismic tomographic images below the Central Hellenides
a) Map sketch of the Hellenides shows the position of the NE-SW vertical section through the mantle below the Central Hellenides c).

b) Seismic tomographic images (BSE models, ascertained from Hafkenscheid 2004) of horizontal sections through the mantle at 6 different depths, showing iso-density contours.

c) The vertical section through the BSE models. The sketch schematically depicts perturbation “clouds” containing the lithospheric “slabs” (see e)). Slab X has sunk about 900km, slab Y has sunk about 400km.

d) Vertical sections depicting the mantle eastwards of the Hellenides show that there are two sinking lithospheric slabs.

e) The perturbations appear to bulge with depth in the mantle, suggesting that subducted slabs undergo vertical compression and folding? in which case, only the minimum widths of the original slabs can be estimated.

Fig. 4 Overview tectonic sections of the study areas (nomenclature “Almopias, Paikon and Peonian” units after Kockel, 1979).

a) western part of section shows obducted ophiolite, composed of serpentinite, peridotite, basalt, gabbro and radiolarian chert, which was obducted together with tectonic mélangé over the Pelagonian carbonate platform (Scherreiks 2000). The Elias formation has been interpreted as a relict of a supra-subduction island arc complex (Scherreiks et al. 2014). Bauxite was deposited during the Callovian (Scherreiks et al. 2016) (Table 1a 5 and 6). The eastern part of section a) shows overthrust, supposed Vardar, Cretaceous platform carbonates and mylonitized ocean floor mélangé (devoid of serpentinite). This nappe overlies eroded Upper Triassic dolomite (Scherreiks and BouDagher-Fadel 2020). Section b), shows the Vardar zone between the Guevgueli ophiolite complex and Pelagonian ophiolite near Arnissa. Exposures of Pelagonia-derived ophiolite s. str. occur in the western and central parts of the Almopias zone near Karydia and Lyki/Klisochori; Serpentinite is not found in the eastern Almopias zone, the Krania-Nea zoí units, or the units of the Paikon sub-zone (see also Fig. 6).

Fig. 5 Overview geologic map of Skopelos and Alonnisos in the Northern Sporades (based on Matarangas 1992; Kelepertsis 1974 and Scherreiks and BouDagher-Fadel 2020), The Cretaceous limestone formation of Alonnisos and Skopelos lies tectonically emplaced, together with a sheared mélangé of metamorphic ocean-floor basalt and radiolarian chert, on top of an erosional disconformity over Pelagonian Upper Jurassic limestone on Alonnisos and Upper Triassic dolomite on Skopelos. It has been postulated that the tectonic emplacement took place during Paleocene time as Pelagonia underthrust the Cretaceous forearc basin of the Vardar volcanic arc (Scherreiks and BouDagher-Fadel 2020).

Fig. 6 Geologic overview map of the Vardar and adjacent Pelagonian zone (based on Mercier and Vergely 1988 and 1984; Katrivanos et al. 2013; Georgiadis et al. 2016; and own field work). The Pelagonian zone is in an underthrust position relative to the Cretaceous carbonate platform of the Vardar zone (Georgiadis et al. 2016) (B-B’). Imbricated ophiolite and Jurassic limestone are exposed in a window extending from Margarita to Veria. Metamorphosed Pelagonian limestone is exposed in the Gandach antiform of the Paikon sub-zone near Livadia. The tectonic section A-A’is shown in Figure 4b. The formations between the Gandach marble and the Theodoraki limestone is a composite mélangé

Fig. 7 Chondrite-normalized REE and ternary discrimination diagrams

a. LREE enriched samples, probably IABs.

b. Flat REE and LREE depleted samples, most likely MORBs (see text).

c. Discrimination diagrams: Vardar-zone data (AFMs are also shown for Evvoia and the Northern Sporades). The AFM from Perfit and others (1980) shows the plots of 1170 IABs (also the dashed red line area in the Vardar diagram, encompassing only a few of the Vardar meta-basalts).

Fig. 8 Composite tectono-stratigraphic synopsis:

a) Evvoia and the Northern Sporades were overthrust by the Eohellenic ophiolite which was subsequently deeply eroded and transgressed by ~Cenomanian orthoconglomerates. On the
Northern Sporades, the ophiolite and Lower Cretaceous had been removed by erosion before being underthrust beneath the Vardar-zone sheet during Paleocene time. b) Likewise, the Vardar zone was underthrust by Pelagonia, which carried remnants of Eohellenic ophiolite and possibly Cenomanian orthoconglomerates. c) schematic section through the Vardar ocean between Pelagonia and Serbo-Macedonia indicating the widths (km) of oceanic lithosphere (see seismic tomography). Legend: 1) Cretaceous and Paleocene carbonates. 2) mélange including Triassic radiolarite and basalt, pyroclastic rocks, and carbonate slices. 3) Upper Jurassic (Pelagonian slices) and lower Cretaceous Theodoraki carbonate slices. 4) Pelagonian ophiolite s. str. 5) Pelagonian Jurassic carbonates 6) Pelagonian upper Triassic dolomite 7) Crystalline basement of Pelagonia. D1-D3 deformations (see text)

Fig. 9 Palaeogeography and time-laps cartoons

a) The Vardar ocean was situated between two passive margins, continental Adria (including Korab-Pelagonia) and Serbo-Macedonian Europe. Early Middle Jurassic intra-oceanic subduction led to the demise of about 1200 km of Vardar lithosphere and to the obduction of about 200 km of the Eohellenic ophiolite onto eastern Pelagonia. Subsequently, about 1700km of Vardar ocean lithosphere subducted beneath the Paikon (east Vardar) island arc, followed by the crash of eastern Pelagonia with the island arc, and finally (c) to the collision of Pelagonia with Serbo-Macedonia.

b) This time-laps cartoon shows the demise of the Vardar ocean in 7 stages. The Vardar ocean slabs are shown as they reach their present position shown in Fig. 3c. It is important to note that the Earth’s curvature has been neglected in the graphic. This creates distortion in the lower mantle making it appear wider than it should be.

Time schedule of subduction

1) The Vardar ocean existed during Late Triassic time verified by radiolarians associated with pillow basalt (Table 1a Carnian-Norian).

2) Intra-oceanic subduction was in progress around Toarcian to Aalenian time (180–170 Ma), based on the metamorphic age of subduction-zone amphibolite mélange (Roddick et al.1979; Spray and Roddick 1980). Plate polarity, however, had already changed from divergence to convergence, during the Late Triassic, testified by the subsidence of the Rhaetian-Sinemurian peritidal carbonate platform and change to the subtidal platform of Pliensbachian and Toarcian time (Scherreiks et al. 2010) (Table 2a Rhaetian-Pliensbachian). Subduction of slab (x) continued through the Middle Jurassic, verified by late Middle Jurassic radiolarians in ophiolite mélange in Evvoia (Danelian and Robertson 2001; Scherreiks et al. 2014).

3) Platform uplift, erosion and bauxite deposition occurred during the Callovian (Meléndez et al. 2007; Scherreiks et al. 2016), presumably due to the crash of the Eohellenic arc with the Pelagonian platform (Callovian unconformity ibid.), causing upwarping of the carbonate platform. This stress communicated across the east Vardar ocean causing subduction between east Vardar and Serbo-Macedonia.

4) As the Eohellenic ophiolite advanced, the carbonate platform subsided below the CCD during Kimmeridgian-Berriasian time while back arc spreading was taking place in Guevgueli.

5) The final Eohellenic ophiolite emplacement takes place about Valanginian time. The west Vardar slab x breaks off and sinks, the Pelagonian platform rises and deep erosion of the Eohellenic nappe takes place. The Cretaceous carbonate platform evolves on top of volcanic debris of the forearc basin and accretionary wedge. The east Vardar slab (y) continues to subduct.

6) Pelagonia crashes with the arc, underthrusts the Cretaceous carbonate platform and volcanic arc, and the Guevgueli back arc basin.

7) Pelagonia crashes with Serbo-Macedonia while the Vardar slab breaks of and subsides.

c) The cartoon shows the final episode of Vardar ocean subduction. Pelagonia crashes and underthrusts the arc and the Vardar slab breaks off. Pelagonia crashes with Serbo-Macedonia which initiates folding and renewed thrust faulting.
Fig. 1. *Contusotruncana fomicata* (Plummer).
Fig. 2. *Globotruncanita stuarti* (De Lapparent).
Fig. 3. *Globotruncana arca* (Cushman).
Fig. 4. *Globotruncana linneiana* (d’Orbigny).
Fig. 5. *Radotruncana subspinosa* (Pessagno).
Fig. 6. a) *Rugoglobigerina hexacamerata* Brönnimann, b) *Radotruncana subspinosa* (Pessagno).
Fig. 7. *Globotruncana aegyptiaca* Nakkady.
Fig. 8. a) Schackoina sp., b) *Ventilabrella glabrata* (Cushman), c) *Rugoglobigerina hexacamerata* Brönnimann.

Fig. 9. *Globotruncana lapparenti* Bolli.

Fig. 10. *Heterohelix dentata* (Stenestad).

Fig. 11. *Rugoglobigerina rugosa* (Plummer).

Fig. 12. *Globotruncana rosetta* (Carsey).

Fig. 13. *Heterohelix carinata* (Cushman).

Fig. 14. *Globotruncanita atlantica* (Càron).
Plate 2a

a. Field photo: breccio-conglomeratic ophiolite mélangé in west Almopias, near Karydi

b. Field photo: breccio-conglomeratic carbonate mélangé in west Almopias near Nisi

c. Photomicrograph: rounded grain of limestone and adjacent matrix of micro-breccia without cement.
d1 and d2 Photomicrographs: neomorphic calcite (parallel and crossed nicols) in the matrix of 2b, showing palimpsest relic matrix grains and twinning planes.
e-Photomicrograph: matrix of 2b showing initial palimpsest texture of growing neomorphic calcite in the matrix with recognisable twin planes
<table>
<thead>
<tr>
<th>Table 1a biostratigraphy of Evvoia and Northern Sporades (BouDagher-Fadel 2008; Scherreiks 2000; Scherreiks et al. 2010, 2014; Scherreiks and BouDagher-Fadel 2020a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelagonian carbonate platform</td>
</tr>
<tr>
<td>1. Rhaetian-Hettangian: peritidal/subtidal</td>
</tr>
<tr>
<td>2. Sinemurian-Early Pliensbachian: shallow warm reef environment</td>
</tr>
<tr>
<td>Siphovalvulina coloni, Siphovalvulina gibraltarensis, Duotaxis metula, Lituosepta recoarensis, Riyadhella praerregularis. Lituosepta compressa, Riyadhella praerregularis, Palaeodasycladus mediterraneus, Pseudocyclammina liasica, Lituosepta recoarensis</td>
</tr>
<tr>
<td>3. Aalenian-Bathonian: shallow water environment</td>
</tr>
<tr>
<td>Mesoendothyra croatica Gusìc’</td>
</tr>
<tr>
<td>4. Middle to Upper Jurassic: shallow water environment</td>
</tr>
<tr>
<td>BouDagher-Fadel 2008</td>
</tr>
<tr>
<td>Neokilianina rahonensis</td>
</tr>
<tr>
<td>5. Bathonian-Callovian foraminifera suite: shallow warm reef environment</td>
</tr>
<tr>
<td>This limestone occurs below the below the bauxite Pseudomarssonella bipartita, Redmondoides medius, Andersenolina elongata, Riyadhella sp. Ammobaculites sp., Trocholina sp., Palaeodasycladus cf. mediterraneus, Pseudopfenderina sp., Everticyclammina sp., Siphovalvulina sp., Riyadhoides sp.</td>
</tr>
<tr>
<td>6. Callovian-Oxfordian foraminifera suite on top of laterite: shallow reef environment</td>
</tr>
<tr>
<td>Chablaisia sp, Septatrocholina banneri, Andersenolina elongata, Andersenolina sp., Palaeodasycladus sp</td>
</tr>
<tr>
<td>7. Upper Jurassic shallow patch-reef environment</td>
</tr>
<tr>
<td>Protopenoperis striata, Parurgonina caeinensis, Thaumatoporella parvoesculifera, Actinostromaria tokadiensis</td>
</tr>
<tr>
<td>8. Late Berriasian-Early Valanginian: shallow reef environment</td>
</tr>
<tr>
<td>Cladocoropsis mirabilis, Zergabriella embergeri</td>
</tr>
<tr>
<td>9. Late Cretaceous transgression in Evvoia, Maastrichtian: outer neritic environment</td>
</tr>
<tr>
<td>Plummerita aff. hantkeninoides, Idalina aff antiqua, Hippurites sp., Planorbulina cretae: on a rudist clast (Campanian)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cretaceous carbonate platform of the Northern Sporades</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Albian to Santonian: shallow reef environment</td>
</tr>
<tr>
<td>Nezzazatinella picardi, Nezzazata convexa, Dicyclina schlumbergeri</td>
</tr>
<tr>
<td>10.2 Late Santonian to Maastrichtian: reef/forereef environment</td>
</tr>
<tr>
<td>Rotorbinella sp., Orbitooides sp., Lithocodium sp., Lithocodium aggregatum, rudists</td>
</tr>
<tr>
<td>10.3 Early Paleocene: shallow reef environment</td>
</tr>
<tr>
<td>Kathina sp., Daviesina sp., Lockhartia sp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radiolarians in Evvoia</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2 Elias complex, Middle to Late Jurassic: Spongocapsula hooveri, Parviculangula dhimenaensis s.l. Transhuum brevicostatum, Protunuma sp., Sethocapsa sp.</td>
</tr>
<tr>
<td>12. Ophiolite mélange (Danelian and Robertson 2001; Gingins and Schauer 2005)</td>
</tr>
<tr>
<td>Middle Bathonian to Lower Callovian Parviculangula dhimenaensis ssp., Mirifusus fragilis s.l., Transhuum maxwelli gr., Tricolocapsa plicatum s.l.</td>
</tr>
</tbody>
</table>

Table 1a Biostatigraphic data, Evvoia and the Northern Sporades
Table 1b West and Central Almopias

After Mercier and Vergely 1988 Updated and additional age and palaeoenvironmental determinations (BouDagher-Fadel et al., 2015, 2018a, 2018b)

1. West Almopias

1.1 Late Maastrichtian (Maastr, 2): inner neritic environment

Planktonic foraminifera: *Abathomphalus mayaroensis, Globotruncana Staurti, Contusotruncana contusa, Globotruncana arca* and *Globotruncana linneiana* and the larger benthic foraminifera *Orbitoides medius*

1.2 Santonian-early Campanian: shallow reef/intertidal environments

The Hippuritidae, *Vaccinites atheniensis*

2 Kato Grammatiko Pyrgi: Cenomanian (Cen. 1): forereef/inner neritic environment

Planktonic foraminifera: *Rotalipora appenninica* and larger benthic foraminifera *Nezzazata simplex*

3. Kerassia Campanian-Maastrichtian (Camp. 3b-Maast 2),: inner to outer neritic environment

Globotruncana arca [= G. convexa], Globotruncanita gr. struarti-stuartiformis

4 Kerassia – Nisi – Kedronas

4.1 Campanian (3, 77.0-72.1Ma): Inner to outer neritic planktonic foraminifera in micritic wackestone:

- *Radotruncana subspinosa, Heterohelix dentata, H. spp., Globotruncana lapparenti, G. aegyptiaca, G. ventricosa, G. linneiana, G. rosetta, G. arca; Contusotruncana fornicata; Ventilabrella glabra; Rugoglobigerina rugosa, R. hexacamerata; Globotruncanita atlantica, Gl. staurti, Gl. sp.; Schackoina sp.; Globotruncanella sp.; Archaeoglobigerina blowi.*

4.2 Aptian (Apt. 1-4a): reefal to inner neritic environment depositional depths of between 10 and 50m.

The presence of the larger benthic foraminifera *Palorbitolina discoidea* Gras (Barremian to Aptian), *Palorbitolina lenticularis*, indicate Aptian 1-4a age 125-115 Ma (see BouDagher and Price, 2019).

6 Jurassic exposures in the Kerassia-Nisi area (Pelagonian origin) Oxfordian-Early Cretaceous: low energy environment

Stylosmilia cf. miehelini, Thecosmilia cf. langi, Cladocoropsis mirabilis, Dermosmilia sp. and Schizosmilia cf. rolleri indicate a ?Late Oxfordian-? Early Kimmeridgian age (in Sharp and Robertson 2006)

7. Central Almopias (Maragarita and Kí̂ ssoschori limestones on top of Jurassic mélangé) with "conglomeratic" lenses

7.1 Flamouria, (east of Edessa) Early Santonian: outer neritic

Marginotruncana coronata, Globotruncana arca [= G. convexa, Marginotruncana marginata]. The shallow water Early Cretaceous larger benthic foraminifera, *Orbitolina* sp. are reworked into the pelagic assemblages.

7.2 Messimeri (beneath Central Almopias mélange south of Edessa) *Cladocoropsis* sp.

Indicates Late Jurassic age and Pelagonian
Table 1c East Almopias and Paikon (after Mercier and Vergely 1984) updated age and environment (BouDagher-Fadel et al., 2015)

<table>
<thead>
<tr>
<th>Paikon</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Theodoraki unit</td>
</tr>
<tr>
<td>5.1 Late Maastrichtian (Maast. 2-3): outer neritic Globotruncana linneiana, Contusotruncana contusa, Globotruncana arca</td>
</tr>
<tr>
<td>5.3 Early Campanian (Camp 1-2): outer neritic Globotruncanita stuartiformis indicates Campanian Santonian Marginotruncana marginata indicates an early Santonian age reworked into early Campanian assemblage.</td>
</tr>
<tr>
<td>5.4 Early Cenomanian (Cen. 1): reef/inner neritic Orbitolina gr. Concava, Nezzazata sp., Cuneolina sp., Cycloloculina sp., Pseudolituonella sp. (see BouDagher-Fadel, 2018a)</td>
</tr>
</tbody>
</table>

| 6.1 Aptian-Early Albian Mesorbitolina sp., Sabaudia minuta |
| 6.2 Late Jurassic to Early Cretaceous Actinoporella sp., Pseudocyclamina sp., Cuneolina sp., Cladocoropsis mirabilis, nerineid gastropods |

Table 1c Biostratigraphic data, east Almopias and Paikon
Table 2a Geochemistry of major and trace elements for the Vardar zone

(Fusion-Inductively Coupled Plasma Mass Spectrometry and Fusion Mass Spectrometry)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Si</th>
<th>Al</th>
<th>Fe</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Ti</th>
<th>Zr</th>
<th>Hf</th>
<th>Nb</th>
<th>V</th>
<th>Cr</th>
<th>Mn</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vardar Zone</td>
<td></td>
</tr>
<tr>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>10.9</td>
<td>11.2</td>
<td>15.3</td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>2.1</td>
<td>2.5</td>
<td>3.7</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.15</td>
<td>0.18</td>
<td>0.23</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.38</td>
<td>0.45</td>
<td>0.58</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.05</td>
<td>0.06</td>
<td>0.08</td>
<td>0.09</td>
<td></td>
</tr>
</tbody>
</table>

Table 2b Geochemistry of major and trace elements for Evvoia and the Northern Sporades

(same analytical information as in Table 2a)