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Abstract

In the absence of pharmaceutical interventions, social distancing is being used worldwide to

curb the spread of COVID-19. The impact of these measures has been inconsistent, with

some regions rapidly nearing disease elimination and others seeing delayed peaks or nearly

flat epidemic curves. Here we build a stochastic epidemic model to examine the effects of

COVID-19 clinical progression and transmission network structure on the outcomes of

social distancing interventions. Our simulations show that long delays between the adoption

of control measures and observed declines in cases, hospitalizations, and deaths occur in

many scenarios. We find that the strength of within-household transmission is a critical

determinant of success, governing the timing and size of the epidemic peak, the rate of

decline, individual risks of infection, and the success of partial relaxation measures. The

structure of residual external connections, driven by workforce participation and essential

businesses, interacts to determine outcomes. We suggest limited conditions under which

the formation of household “bubbles” can be safe. These findings can improve future predic-

tions of the timescale and efficacy of interventions needed to control second waves of

COVID-19 as well as other similar outbreaks, and highlight the need for better quantification

and control of household transmission.

Author summary

Social distancing is the main tool used to control COVID-19, and involves reducing con-

tacts that could potentially transmit infection with strategies like school closures, work-

from-home policies, mask-wearing, or lockdowns. These measures have been applied

around the world, but in situations where they have suppressed infections, the effect has

not been immediate or consistent. In this study we use a mathematical model to simulate

the spread and control of COVID-19, tracking the different settings of person-to-person

contact (e.g. household, school, workplace) and the different clinical stages an infected

individual may pass through before recovery or death. We find that there are often long
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delays between when strong social distancing policies are adopted and when cases, hospi-

talizations, and deaths peak and begin to decline. Moreover, we find that the amount of

transmission that happens within versus outside the household is critical to determining

when social distancing can be effective and the delay until the epidemic peak. We show

how the interaction between unmitigated households spread and residual external con-

nections due to essential activities impacts individual risk and population infection levels.

These results can be used to better predict the impact of future interventions to control

COVID-19 or similar outbreaks.

Introduction

In less than a year the novel coronavirus SARS-CoV-2, the causative agent of COVID-19, has

spread from an initial foci in Wuhan, China to nearly every corner of the globe. At the time of

writing, over 2 million deaths had been reported, which will likely make this emerging virus

the top infectious cause of death in 2020. Several clinical and epidemiological features of

COVID-19 have contributed to its disastrous effects worldwide. The overlap in symptoms

with many endemic and milder respiratory infections—such as influenza, parainfluenza, respi-

ratory syncytial virus, and seasonal coronaviruses—make syndromic identification of cases dif-

ficult. The relatively high percentage of infected individuals who require hospitalization or

critical care compared to seasonal respiratory infections has put an unprecedented burden on

the healthcare systems of hard-hit regions. The important role of presymptomatic and asymp-

tomatic individuals in transmitting infection makes symptom-based isolation less effective.

Uncertainty about the case fatality risk from COVID-19 [1] and misguided comparisons to

seasonal influenza contributed to sluggish responses in many regions, in contrast to previous

outbreaks of SARS and MERS.

In the absence of either a vaccine or antiviral therapy, and given the continuing limitations

in testing capacity in most regions, the main tools implemented worldwide to control the

spread of COVID-19 have been “non-pharmaceutical interventions” including “social distanc-

ing”, isolation of cases, and quarantine of contacts. All of these measures are crude attempts to

prevent the person-to-person contact that drives the transmission of respiratory infections,

and have been used since antiquity in attempts to control outbreaks of plague, smallpox, influ-

enza, and other infectious diseases [2,3]. Social distancing is a blanket term covering any mea-

sure that attempts to reduce contacts between individuals, without regards to their infection

status. Within two weeks of identifying the original outbreak in Wuhan, a cordon sanitaire had

been implemented around the entire Hubei province, prohibiting travel in or out of the region

and requiring individuals to remain in their houses except to buy essential supplies. Elsewhere

schools and universities have been closed, international travel has been limited, restaurants

and retailers shuttered, mask-wearing encouraged or required, and stay-at-home orders put in

place.

Mathematical models of COVID-19 transmission provided early support for the idea that

social distancing measures could “flatten the curve” and reduce the potential for COVID-19

cases to overwhelm healthcare resources. An influential report from the Imperial College

COVID-19 Modeling Team showed that suppression of the epidemic to levels low enough to

avoid overflow of healthcare capacity would require an “intensive intervention package” that

combined school closures, case isolation, and social distancing of the entire population,

applied for the majority of time over two years [4]. Kissler et al also came to the conclusion

that large sustained reductions in the basic reproductive ratio R0 (the average number of
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secondary infections generated by an infected individual) would be needed, even after

accounting for the potential role of seasonality in transmission [5]. Many more forecasting

models predicted dramatic decreases in the burden of COVID-19 if interventions were

enacted (e.g. [6,7]). Real-time and retrospective analyses of the growth rate of cases and deaths

have suggested that in some settings the epidemic eventually slowed after the implementation

of strong social distancing measures (e.g. in Wuhan and other Chinese cities [8,9], in Hong

Kong [10], across European countries [11], French regions [12], or some US states [13,14]).

The observed dynamics of COVID-19 outbreaks following social distancing policies have

been inconsistent, unpredictable, and the source of much confusion and debate in the general

public and among epidemiologists. Declines in cases and deaths have not occurred uniformly

across regions and have often only occurred after a long delay (Fig 1). The economic and social

costs of these measures are immense: unemployment has surged, stock markets have plum-

meted, delivery of healthcare for non-COVID-19 conditions has been interrupted [15–19].

Social isolation also brings on or exacerbates mental health conditions. Weeks after imple-

menting strong interventions, many regions have continued to see increases in daily diagnoses

and deaths. Does this mean the interventions are not working? Since the political will to sus-

tain strict social distancing measures is waning in many places, it is important to understand

the expected timescale to judge success or failure. If stronger interventions—such as “shelter-

in-place” orders or institutional isolation of mild cases—are needed to slow spread, when will

we know this? What epidemiological and demographic features impact the timescale for epi-

demic waning, and how can we better predict the required duration of these measures for

future outbreaks?

Fig 1. COVID-19 dynamics before and after lockdown interventions in five example regions. A) The city of Wuhan, China (8.5K km2, 11.1M ppl), B)

The Lombardy region of Italy (23.8K km2, 10.1M ppl) C) The autonomous Community of Madrid in Spain (8.0K km2, 6.6M ppl) D) New York City in the

state of New York, USA (1.2K km2, 8.2M ppl). E) The county of Los Angeles, California, USA (4.7K km2, 9.8M ppl). “New cases” and “New deaths” are daily

numbers of new reports, averaged over a 7 day window centered on the current day. For Lombardy, New York, and Los Angeles, “Hospitalized” and “ICU”

are the total number of patients currently in regular hospital care or critical care, respectively. In Wuhan, the same time series are the number of patients

currently categorized as having “severe” or “critical” infection (using the same definitions as in our model). In Madrid, due to data availability, these series

are instead the daily number of new admissions (with 7-day smoothing).

https://doi.org/10.1371/journal.pcbi.1008684.g001
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Social distancing measures reduce potentially-transmissive contacts occurring in schools,

workplaces, social settings, or casual encounters, but they generally do so by confining individ-

uals to their households without additional precautions. Thus, we would expect that the impact

of social distancing measures might depend on the relative contribution of within-household

transmission to disease spread, the distribution of household sizes, the number of households

containing at least one infected individual at the time an isolation measure is enacted, and the

amount of residual contact between households for the duration of the intervention. What do

we know about these factors for COVID-19 or respiratory infections more generally, and how

do they interact to determine epidemic dynamics after an intervention?

In this paper we examine the impact of COVID-19 clinical features and transmission net-

work structure on the timing of the epidemic peak and subsequent dynamics under social dis-

tancing interventions. Using data from large-scale cohort studies, we parameterize a model

tracking the progression of COVID-19 infection through different clinical stages. We combine

this with data-driven transmission networks that explicitly consider household vs external

contacts and how they are differentially altered by social distancing measures. We consider

various scenarios for the efficacy of interventions in reducing contacts, heterogeneities in their

adoption in different demographic groups, the relative role of transmission in different set-

tings, and the timing of partial or complete relaxation of isolation measures. We evaluate both

population-level outcomes as well as determinants of individual risk of infection. Our results

show that even following the implementation of strong social distancing measures, the epi-

demic peak can occur weeks to months later, and the decline in cases can be extremely slow.

The efficacy of within-household transmission plays a critical role in the timescale and overall

impact of these measures. These findings provide an impetus for continued adherence to social

distancing measures in the absence of immediate results, can inform planning for hospital

capacity, and suggest that retrospective efforts to assess the efficacy of different intervention

policies should account for these expected delays.

Methods

Modeling the spread and clinical progression of COVID-19

We modified the classic SEIR compartmental epidemiological model to describe the dynamics

of COVID-19 infection (S1 Text and Fig 2A). After infection, individuals pass through an ~ 5

day incubation period before developing asymptomatic or mild infection, which could include

fever and cough or other symptoms. This stage lasts ~ 1 week and individuals are infectious for

this duration. A portion of individuals progress to “severe infection”, which is typically charac-

terized by pneumonia requiring hospitalization, and we assume averages 6 days. Some individ-

uals progress further to “critical infection”, which requires ICU-level care that often includes

mechanical ventilation, and some of these individuals eventually die (after ~ 8 days of critical

care), leading to an ~2% case fatality risk. At each stage, individuals who don’t progress or die,

recover and are assumed to be immune for the duration of the outbreak. The duration of each

stage of infection is assumed to be gamma-distributed with mean and variance taken from the

literature. Infectious individuals can transmit to any susceptible individuals with whom they

are in contact, with a constant rate per time for the duration of their infection. With our base-

line parameters, the doubling time of infection is ~ 4 days, the basic reproductive ratio R0 is

~3, and the serial interval is ~8 days, in agreement with epidemiological studies of COVID-19.

A detailed description of the clinical definitions of different infection stages, the model behav-

ior, and the model parameters and references are given in the Methods.

We then simulate infection spreading stochastically through a fixed, weighted contact net-

work with one million nodes. The population size is chosen to represent a typical metropolitan
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area. As a baseline scenario, we consider a simple approximately well-mixed population where

anyone can potentially transmit the virus to anyone else in the population. To more accurately

capture human contact patterns, and how they are altered by social distancing measures, we

constructed multi-layer networks describing connections within households and external con-

nections (S1 Text and Fig 3A). Each individual was assigned to a household and connected to

everyone in their house. Household size distributions were taken from the 2010 United States

census (average household size nHH~2.5, full distribution shown in Fig 3B). External connec-

tions were constructed by connecting individuals to people in other households. The distribu-

tion of the number of external connections was taken from detailed contact surveys that

recorded daily interactions amenable to transmission of respiratory infections (average

nEX~7.5, standard deviation 2.5) [20,21]. As a baseline case we constructed “two-layer” net-

works assuming these external connections were random, whereas later in the paper we con-

sider more complex and realistic “five-layer” network structures. While these data sources

Fig 2. Dynamics pre and post social distancing intervention in well-mixed populations. A) Model of COVID-19 clinical progression and transmission. The

model is described in the text and detailed in the Methods. Social distancing interventions (red X) reduce the rate of transmission and the generation of new

infections. B-E) Simulated time course of the population level prevalence of each clinical stage of infection under different intervention efficacies. The

intervention was implemented on day 40. Solid line is mean and shaded areas are 5th and 95th percentile. Black dotted line shows the time the intervention

began. F) Time to peak of different infection stages, measured as days post-intervention. The first three quantities are peak prevalence levels (I1, I2, I3), while

the latter two are peak daily incidence values. We assume that cases are diagnosed only at the time of hospitalization. Daily incidence values were first

smoothed using moving averages over a 7 day window centered on the date of interest. Bars represent 5th and 95th percentile.

https://doi.org/10.1371/journal.pcbi.1008684.g002
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inform the number of contacts, the probability of infection depends both on the number of

unique contacts and on the time spent together and the intensity of the contact, which can be

represented by weights in the network. We hypothesized that household and external contacts

could have different effective weights. For example, individuals may spend 8–10 hours a day

with coworkers or classmates, but only a few waking hours with household members, and so

external contact could have higher weights. Alternatively, individuals may have more intense

physical contact with household members, such as children or spouses with whom co-sleeping

can occur. Since these weights are unknown, we considered a range of scenarios for the relative

weights of household (wHH) and external (wEX) contacts, keeping the total transmission inten-

sity (basic reproductive ratio R0) constant. These scenarios result in different observed values

of the household “secondary attack rate” (the probability a single index individual infects any

Fig 3. Dynamics pre and post social distancing interventions in network-structured populations with household and external transmission. A) Multi-layer

network of transmission. Individuals have contacts within their households and with others outside the household. Household and external contacts may have

different weights (e.g. different likelihood of transmission), due to for example different levels of physical contact or time spent together per day. Social

distancing interventions (red X) remove or decrease the weight of external contacts. B) Distribution of household sizes. C) Distribution of the # of contacts

(degree) within the household and outside the household. D) The contribution of household and external spread to the total R0 value as a function of the relative

weight of external contacts. E)-F) Simulated time course of different clinical stages of infection under an intervention with efficacy of 100% (E) or 80% (F) at

reducing external contacts, when household and external contacts have equal weight. Black dotted line shows the time the intervention began. G) The role of the

relative importance of household vs external contacts in determining the outcome of the intervention, measured by the size of the epidemic. Epidemic final size

is defined as the percent of the population who have recovered by day 300. H-J) Same as above but under the scenario where the weight of household contacts

doubles post-intervention (wHH! 2wHH, due to increased time spent in house). K) The household secondary attack rate, defined as the probability of

transmission per susceptible household member when there is a single infected individual in the house, as a function of the relative weight of external contacts.

L) The percent of households which are “seeded” with infection at the time the intervention was implemented (i.e. have at least one infected individual). In all

scenarios the overall infection prevalence at the time intervention was started was identical.

https://doi.org/10.1371/journal.pcbi.1008684.g003
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given household contact) (Fig 3K). We also hypothesized that when individuals are isolated in

their homes as a result of social distancing measures (e.g. school closures or work-from-home

mandates), they may be spending significantly more time with household members and thus

have a higher transmission rate. We modeled this by allowing the weight of household contacts

to increase during an intervention.

We model the implementation of social distancing measures by reducing the weight of all

external contacts (or all contacts in the well-mixed model) by a fixed % that we term the “inter-

vention efficacy”. Alternatively, we could randomly remove a fixed % of contacts, but the

results are very similar (see Methods). Our model is similar to other models that have been

used to describe the spread of COVID-19. A unique feature of our model is that it simulta-

neously captures the clinical progression of COVID-19 (as opposed to simpler SEIR models), a

reasonable approximation of contact network structure (as opposed to well-mixed models),

and realistic distributions of the durations of states (as opposed to continuous-transition mod-

els which assume exponentially-distributed durations, and lead to unrealistically long tails in

infection after strong interventions). We can simulate infections for the duration of the epi-

demic in less than 1 minute on a single GPU, in populations of a million.

Results

Observed COVID-19 dynamics following social distancing interventions

To characterize the dynamics of COVID-19 following social distancing measures, we chose

five regions from around the world with large outbreaks: the city of Wuhan, China, the Lom-

bardy region of Italy, the Community of Madrid in Spain, New York City in the state of New

York, USA, and the county of Los Angeles, California, USA (Fig 1). These regions each imple-

mented strong “lockdown” measures (aka “stay-at-home” or “shelter-in-place” orders) within

3 weeks of their first reported COVID-19 case and provided data not just on cases and deaths

but also on cases requiring hospitalization and ICU-level care (see S1 Text). In each setting,

there was a long delay between the implementation of social distancing and the peak incidence

of cases (1.5–3 weeks) and deaths (2–3 weeks), or peak occupancy in hospitals and ICUs

(~1 month). The timescale of the eventual decline in cases post-peak was much slower

than the initial increase in cases in all regions, with a half-life between 10 and 24 days in all

regions except Los Angeles, where the outbreak approximately plateaued but did not begin

decreasing. The goal of this paper was to understand whether the clinical progression of

COVID-19 and transmission network structure could explain these types of post-intervention

dynamics.

Prolonged clinical progression of COVID-19 leads to delay until decline in

cases and deaths following an intervention

We first considered the role of the clinical features of COVID-19 alone, in the delay from imple-

mentation to peak infections and deaths, by simulating our model in an unstructured popula-

tion. The intervention was implemented when cumulative reported cases were ~200 per million

and deaths ~5 per million (total infected ~1%), mirroring the timing of stay-at-home orders

across major US metropolitan areas (see S1 Text). While we expect the number of new infec-

tions to begin decreasing immediately, newly infected individuals in the “exposed class (E)”

(incubation period) cannot generally be tracked, since they are pre-symptomatic and often not

yet shedding enough virus to test positive. Instead, later stages of infection are monitored.

We found that under a perfect intervention, we expect ~2 days delay until the peak preva-

lence of mild infections, ~9 days for severe infections, and ~15 days for critical infections,
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suggesting that the requirements for healthcare capacity may peak quite a bit after implemen-

tation (Fig 2). In the more realistic scenario where the intervention is imperfect (70% effec-

tive), these timelines are significantly extended, for example to ~7, 17, and 30 days for mild,

severe, and critical infections respectively. In most regions, individuals are reported at the time

of diagnosis, and not tracked until recovery, and so case counts can only be used to track inci-
dence rates, not prevalence levels. We consider a region where infections are only counted

upon hospitalization (progression to severe class), and then find that peak incidence of cases

occurs 7 and 11 days after an intervention that is 100% or 70% effective. Daily deaths peak

much later: after 18 days (100% effective) to 35 days (70% effective). Under our parameter val-

ues, a 50% intervention “flattens the curve” but does not prevent spread, and incidence cases

and deaths don’t peak until 13 and 15 weeks after the intervention, respectively. The total per-

cent of the population infected over the course of the whole epidemic was reduced from ~92%

to ~0.6% with a 100% effective intervention, but only to 58%, 3%, or 0.65% with a 50, 70% or

90% effective intervention.

The exact timings that we report here depend on the assumptions of our model, in particu-

lar, the average duration of each stage of infection (see S1 Text for details) as well as on the epi-

demic growth rate pre-intervention (it takes longer for epidemics that were growing faster to

peak and begin declining). However, the qualitative finding that peaks in case counts, hospital-

izations, and deaths can be significantly delayed beyond when an intervention is implemented

is a general finding for models tracking the natural history of COVID-19. Note that in our

model, we assume that the intervention is adopted the same day it is instituted, whereas in real-

ity, there may be a further delay until individuals are able to comply with the intervention.

The relative contribution of household and external spread influences

outcome of interventions

We hypothesized that the continual spread of COVID-19 within households after the imple-

mentation of social distancing measures could further delay peak cases and deaths, and

increase the number of people infected despite the intervention. Using our network-structured

model (see Methods) for household and external contacts, we simulated the implementation

of interventions of increasing efficacy under different assumptions about the relative weight of

the household vs external contacts. In addition, we examined the impact that the increased

time spent with household members (and hence an increased transmission potential) after

stay-at-home policies begin could have on the outcome of an intervention and the timescale

for disease elimination (Fig 3).

With our baseline assumption that household and external contacts had equal weight, we

observed that cases declined rapidly under very strong interventions (Fig 3E and 3H), while

imperfect interventions (e.g. ~80%) often resulted in very gradual decreases in cases over

many months (Fig 3F). In both scenarios the eventual fraction of the population infected was

dramatically reduced compared to the no intervention case, but these long timescales likely

mean that costly social distancing policies cannot be maintained long enough for suppression

of the epidemic to occur. This slow decline could be further compromised if the risk of trans-

mission within a household increases under stay-at-home policies (Fig 3I). In this case the epi-

demic could continue to increase for months post-intervention before eventually declining,

albeit still to a much lower final size than in the absence of interventions.

When the outcome of an intervention was measured by the total fraction of the population

infected over the course of the outbreak, we found that there was a surprisingly complex rela-

tionship between the relative contribution of household and external contacts to transmission,

and the intervention success (Fig 3G and 3J). Keeping the total R0 constant, social distancing
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interventions are most effective when either external contacts have very high weights or when

they have very low weights. In the former case (high external weight + low household weight),

most of the pre-intervention transmission comes from outside the household, and the inter-

vention is very effective at blocking this transmission (Fig 3D and 3K). At the time the inter-

vention is implemented, many households are “seeded” with infections that originated outside

the house (Fig 3L), but after the intervention, household transmission alone is not effective

enough to lead to a new generation of infections in most houses, without seeding from the out-

side (i.e intervention efficacy <100%). When external contacts have low weight, the interven-

tion is highly effective but for a different reason. Most transmission is inside the household

and can continue post-intervention (Fig 3D and 3K), but very few households are seeded with

infections (Fig 3L). The weak inter-household contacts are further weakened by the interven-

tion and spillover between households is unlikely, meaning that the infection quickly burns

through susceptibles within a household then dies out.

In the intermediate regime, where household and external contacts have approximately

equal weight, social distancing interventions are less effective, and are very sensitive to imper-

fect efficacy. For example, when external contacts have ~1/3 the weight of household ones,

each type of contact contributes equally to the overall pre-intervention R0 (since there are ~3x

the number of external contacts as household ones). With a 100% effective intervention, the

final epidemic size is ~0.7%, but rises to ~7% with a 80% effective intervention (Fig 3G). The

combination of enough household spread (R0
HH>1) to allow efficient transmission post-inter-

vention within “seeded” households and enough external spread (R0
EX>1) to seed households

before the intervention is implemented to allow post-intervention spillover of infections to

other households is the most difficult case for control. These effects are exacerbated if we

assume household transmission rates (contact weights) can increase post-intervention (Fig

3J). For an 80% effective intervention, the final epidemic size can be 5–10—fold higher than

expected due to increased chance of within-household transmission. We repeated these simu-

lations with a hierarchically-clustered external layer (see Methods) to check the robustness of

the trends to details in the large-scale clustering of the transmission network (S1 and S2 Figs).

We found the trends to be preserved, with the most noticeable difference being in the number

of houses “seeded” with infection at the time of intervention.

Residual household transmission can further delay time to see the impact

of an intervention

We found that the expected time to peak infections and deaths after a social distancing inter-

vention was implemented could be increased dramatically when we accounted for household

structure, and was sensitive to the relative importance of household and external contacts

before and after the intervention (Fig 4). Under a 100% effective intervention (Fig 4A), the

delays to peaks were driven mainly by the clinical progression alone, similar to the case of the

well-mixed population, but were slightly extended due to residual spread restricted to a single

household. In simulations it took around 2 weeks until peak hospitalizations and 3 weeks to

peak critical care cases or daily deaths. However, under an imperfect but still strong interven-

tion (e.g. 80% effective), the times to peak were much longer and sensitive to the relative

weights of the external and household contacts (Fig 4B). Delay to peak cases was longest in the

intermediate regime where external and household contribution to transmission was approxi-

mately equal. For example, when external and household weights were equal, it took an aver-

age of ~ 5.5 weeks to reach peak cases with mild symptoms, ~ 7 weeks until peak cases

hospitalized with severe infection, and ~ 8.5 weeks to the peak of cases in critical care. The

daily incidence of new deaths didn’t peak for ~ 10 weeks.
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The delays in time to peak were less extreme if external contacts had very high or very low

weights relative to the weight of household contacts (Fig 4B). In the case of very high external

weight, most individuals were infected from contacts outside their household before the inter-

vention (Fig 3L). Household spread is relatively inefficient, and has only a minor contribution

to the baseline R0 value (Fig 3D). In most households, there is no further spread after the inter-

vention is implemented. As a result, the epidemic peaked sooner: peak daily deaths occurred an

average of ~ 3 weeks post 100% effective intervention and ~ 5 weeks post 80% effective interven-

tion. On the other hand, when external weight is a lot lower as compared to the household, only

a small fraction of households are seeded with infection by the time intervention is started (Fig

3L). Intervention is very effective at suppressing external transmission and so, even though

household transmission continues during intervention it can not spill over between households.

This causes the epidemic to peak sooner as susceptibles in households get infected quickly and

then the infection dies out. On average, peak daily deaths occurred ~ 3 weeks (100% effective

intervention) and ~ 4 weeks (80% effective intervention) post intervention.

These results were exacerbated if we assumed that the importance of household contacts

increased post-intervention (Fig 4C), due to increased time spent in close quarters. In that

case, peaks increased to up to ~ 6 months for cases in critical care and daily deaths under an

80% intervention. With higher household weights, the efficacy of spread within a household

was stronger, making new generations of infection post-intervention very likely to occur in

households with at least one case. Then, these household infections are more likely to spill over

into other households, even when most external contacts are eliminated by the intervention.

Together, these effects allow for multiple generations of transmission to persist even after a

strong intervention.

In many regions around the world, the effect of social distancing interventions is monitored

in real-time using estimates of the time-dependent reproduction number Rt (e.g. [22]). We

Fig 4. Time to epidemic peak after social distancing interventions depends on the relative roles of household and external transmission. A-C) Time to

peak of different infection stages, measured as days post-intervention. A) Social distancing intervention with 100% efficacy at reducing external contacts (or all

contacts in the case of a well-mixed network). B) Social distancing intervention with 80% efficacy. C) Social distancing intervention with 80% efficacy, and

assuming that household weights double post-intervention (wHH! 2wHH, due to increased time spent in the home). The first three quantities are peak

prevalence levels (I1, I2, I3), while the latter two are daily incidence values. We assume that cases are diagnosed only at the time of hospitalization. Daily

incidence values were first smoothed using moving averages over a 7 day window centered on the date of interest. Bars represent 5th and 95th percentile. For

each clinical stage included (each different color), the lighter-colored data point is the comparison to the well-mixed population, then the other points are for

decreasing contributions of external connections and increasing role of household transmission.

https://doi.org/10.1371/journal.pcbi.1008684.g004
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applied standard procedures for calculating Rt [23] to the incidence data from our simulations,

and using the time at which Rt first crossed the threshold of 1 as a measure of the delay, we

found that the trends agreed with those reported for the epidemic peak (S8 Fig).

Clustered adoption of social distancing measures can further compromise

efficacy

Our results so far have assumed that external contacts in the transmission network are random

connections between pairs of individuals in the population, and that a social distancing inter-

vention results in a uniform random reduction or deletion of these connections. In reality,

human contact networks tend to be highly structured, with groups of individuals with high lev-

els of interconnectedness and large variation between individuals in total contacts (e.g.

[24,25]). Moreover, we don’t necessarily expect adherence to social distancing measures to be

random. For certain occupations or in certain demographic groups, individuals are less likely

to be able to work-from-home or otherwise reduce contacts outside the home. This can lead to

clusters of individuals among whom contacts remain high despite interventions. We hypothe-

sized that this clustered adoption of social distancing measures could lead to more residual

transmission, longer times to peak cases and deaths, and longer times to eradicate infection

from a given region.

To examine these effects, we constructed more realistically-structured, age-segregated

external contact networks. The population was divided into four broad age groups: preschool-

aged, school-aged, working-aged and elderly. Based on large-scale contact surveys and other

modeling studies [20,21,25–27], we broke down external contacts into four different layers—

school, work, social and community (Fig 5A). Age groups determined network membership.

School and work layers consisted of connections between individuals only belonging to the

school-aged and working-aged groups respectively. Individuals belonging to all age groups

were part of the social and community layers. We used a variety of data sources to construct

Fig 5. Clustered vs uniform adoption of social distancing measures. A) Schematic of the multi-layer network created to more realistically capture non-

household contacts and how they are altered by social distancing measures. In each layer, the degree distribution and level of clustering were chosen to match

data. The “community” layer represents any other contact not fitting in the other four categories. Colors of nodes represent four broad age groups that

determine network membership and structure: preschool-aged (pink), school-aged (purple), working-aged (blue) and elderly (green). B)—C) Simulated time

courses of infection in the presence of social distancing intervention with random (B) vs clustered (C) adherence to measures. In both cases, all school

connections were deleted post-intervention and 85% of connections were uniformly deleted at random in the social and community layers. In B) 85% of work

connections were uniformly deleted whereas, in C) 85% of workplaces were dissolved, leading to clusters of disconnected vs connected individuals in the work

layer of the network. The effective intervention efficacy for all layers combined was ~ 88% in both scenarios. Black dotted line shows the time the intervention

began.

https://doi.org/10.1371/journal.pcbi.1008684.g005
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the networks for each layer with degree distributions (both mean and variance in # of contacts)

as well as levels of clustering (aka transitivity, a measure of interconnectedness) that matched

data (see Methods). We assumed that during a social distancing measure, school contacts were

completely removed, and that work, social, and other contacts were reduced by an amount

equal to the intervention efficacy. For work contacts, we also considered the case where edges

weren’t removed at random, but instead, certain “workplaces” were completely dissolved,

whereas others remained (Fig 5C, top). With this implementation, the levels of clustering in

the external network was high both before and after an intervention. Other studies have shown

that such clustered adoption of preventive behavior can lead to lower than expected efficacy of

vaccines and mass drug administration [28–31].

We found that when the intervention efficacy was high, most outcomes were surprisingly

not worse under this clustered adoption (Fig 5). Time to peak cases, hospitalizations and

deaths were similar under random deletion of edges (Fig 5B, bottom) and under the corre-

lated deletion scheme (Fig 5C, bottom). However, we found that the time until infection was

eliminated from the population was much longer: increasing from ~ 180 days to ~ 220 days

for population sizes of a million. For a less effective intervention, the difference in outcomes

for the two deletion schemes was more prominent (S3 Fig). Under clustered adoption, the

epidemic plateaued and took much longer to decline compared to the case of uniform adop-

tion where decline began immediately. We again performed a sensitivity analysis to check

the robustness of these findings to meso-scale clustering of contacts in the network (see

Methods) and found the trends very similar (S4 Fig). These findings suggest that targeting

demographic groups like essential workers, where pockets of infection might persist, with

more aggressive cases-based measures and contact tracing may be necessary to reach elimi-

nation goals faster.

Individual risk of infection depends on household size and occupation

So far our evaluations of social distancing measures have focused on population-level out-

comes such as the timing of the epidemic peak and the overall fraction of the population

infected. However, these findings mask significant heterogeneity in individual risk. From our

simulations, we extracted the individual probability of infection as a function of household

size (Fig 6A), as well as in relation to the external contacts maintained after an intervention

(Fig 6B). We found that the risk of infection increased dramatically with the household size:

with our baseline parameters, it ranged from <0.2% for individuals living alone to 5.4% for

households of size 7 (Fig 6A). These differences occurred independently of the relative weight

of household vs external contacts. The supra-linear increase in risk with household size is

driven by the fact that in larger households there is both more risk of seeding of infection from

outside, as well as more individuals to spread to within the household leading to less chance of

extinction of spread.

We also examined the increased risk faced by “essential workers”, or others who main-

tained contacts in their “work” networks during the time social distancing measures were in

place (Fig 6B). Under more extreme distancing (~85% reduction in contacts), the relative risk

of infection among workers relative to the population average was 1.6, while for individuals

not working themselves but living in the same household as someone who was working was

1.4. In comparison, individuals belonging to households with no workers had a relative risk of

0.8. For a less effective intervention (~70%), these values were 1.6, 1.3 and 0.7 respectively.

These findings highlight the risk faced by communities in which larger households are com-

mon and/or in which more individuals per household may maintain external connections

despite social distancing measures.
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Expanding circles can be safe partial relaxation strategies only under

certain conditions

As a step towards relaxing social distancing measures in settings where the incidence of cases and

deaths has stabilized or is declining, some regions are proposing partial relaxation strategies

whereby groups of households merge to form larger “expanded circles” or “bubbles”, but still min-

imize external contacts [32,33]. Such multi-household groups could have enormous social benefits,

such as providing childcare relief and improving productivity of working parents, and reducing

the mental health toll of social isolation. To examine when this strategy could be safely imple-

mented without risking a rebound in cases, we randomly joined households 1, 2, or 3 months

after the implementation of a strong social distancing measure (80 or 90% effective) (Fig 7).

We found that these household-merging strategies could be safe only if a few criteria were

met. Firstly, they must be applied in the context of steadily declining cases and deaths (Fig 7B

and 7D). In situations where infection levels had stabilized but were barely declining, forming

bubbles always led to at least some resurgence of cases which returned to or exceeded peak lev-

els (Fig 7A and 7C). Secondly, household bubble formation should ideally be accompanied by

a further decrease in contacts outside the house (for example, only one grocery trip per dual-

family household instead of two) and a redistribution of the effective number of household

contacts instead of allowing them to double (for example, by spending time with subsets of the

dual household instead of all time as a complete group). Otherwise, a previously declining epi-

demic could instead stabilize at a persistent level (Fig 7B), or an otherwise stable epidemic

could temporarily resurge (Fig 7A). When resurgence occurred it took 1–4 weeks to see

noticeable increases in hospitalizations or deaths. We did not find a strong dependence on the

timing of household bubble formation. As before, we also tested the robustness of these results

to details in the large-scale clustering of the network by using a metapopulation model that

incorporates the notion of “neighborhoods” (see Methods). We found that the trends were

unaffected independent of whether the merged households belonged to the same (S6 Fig) or

different neighborhoods (S5 Fig).

Fig 6. Individual risk of infection depends on household size and worker status. A) Risk of infection versus

household size in simulations. Risk of infection was calculated after 300 days, with 100% intervention efficacy. Bar

colors represent different relative weights of external contacts (compared to household contacts). Dotted lines are the

population level average infection levels for the same scenarios. B) Risk of infection versus worker status. A “worker” is

defined as someone with an occupation in which they continue to work outside the home despite social distancing

measures. Categories include being a worker yourself (red), living in a household with at least one other individual

who is working (orange), or having no workers in the house (yellow). As a comparison the population average risk is

shown (dotted line). Interventions that reduce the overall number of people working outside the home by 70% and

85% are shown (in all cases all schools are assumed to be closed and the same percent of social and community

contacts are removed).

https://doi.org/10.1371/journal.pcbi.1008684.g006
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Clearly households with less external contacts would be at the least risk from merging with

others, and these policies should only be encouraged in regions where general social distancing

has clearly reduced the prevalence of infection. Similar to our findings in earlier sections, our

predictions are more optimistic when household and external contacts contribute less equally

to transmission.

Discussion

Here we show that the clinical and epidemiological features of COVID-19 interact to produce

long expected delays between the implementation of strong social distancing measures and

when their effects become apparent. Part of the delay is clinical. After infection, individuals

generally pass through an asymptomatic incubation period before entering a phase of mild or

moderate symptoms, and some fraction eventually require hospitalization. Documented

deaths often occur after extended stays in critical care wards. The progression from initial

infection to a reportable case (often at hospital admission) or death can be weeks, and is not

interrupted by current interventions. In addition, social distancing measures reduce transmis-

sion outside the household, but in general they involve isolating individuals within their nor-

mal places of residence and thus do not prevent household transmission. They may in fact

amplify it, by increasing the time household members spend together. If even a small fraction

of households have been “seeded” with infection at the time an intervention is implemented,

cases may continue to increase for multiple serial intervals. This residual transmission is exac-

erbated if weak inter-household connections remain, and especially if there are clusters of

Fig 7. Effect of partially relaxing intervention by forming household bubbles. Some time after a social distancing intervention was implemented, each

household merges with another random household. In each resulting two-household “bubble”, all individuals are connected to all other individuals. A)-D)

Simulated time courses of infection before and after social distancing interventions (with 80% vs 90% intervention efficacy) and after partial-relaxation by

household merging. Top row: External contacts of individuals were unchanged after two households were merged, such that overall number of contacts

increased. Bottom row: External contacts for individuals were reduced after two households were merged, such that overall number of contacts remained

unchanged. In all cases, intervention was started 43 days after the onset of the epidemic (first black dotted line) and was relaxed after two months (60 days,

second black dotted line).

https://doi.org/10.1371/journal.pcbi.1008684.g007
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individuals less able to comply with social distancing measures, for example among communi-

ties with a high prevalence of “essential workers”.

Our results show that it is very difficult for interventions which only target transmission

outside the house to effectively control the outbreak. Unless these interventions reduce the

vast majority of contacts, ongoing transmission in households combined with occasional spill-

over to other households means that the epidemic may continue to increase long after social

distancing begins and when it turns around, declines in cases can be extremely slow. We

found that the relative contribution of household and external contacts to transmission was a

critical determinant of the overall outcome of social distancing interventions, and the time-

scale over which effects could be observed. The number of contacts alone was not very infor-

mative for predicting intervention efficacy. It is not possible to predict the effect of an

intervention that differentially affects household and external contacts by simply estimating

the proportional reduction in the total R0. For example, even if the component of R0 from

household transmission alone is greater than 1, infection cannot continue if external connec-

tions are substantially weakened. These findings highlight the need for more studies to deter-

mine the contribution of different types of contacts to transmission.

The role of household transmission in the spread of COVID-19 is variable across settings.

Several studies with detailed contact tracing have attempted to estimate the household “sec-

ondary attack rate”, i.e. the probability of transmission per susceptible household member

when there is a single infected individual in the house. In a large study in Shenzhen, China, Bi

et al estimated this rate at 11% [34]. In Guangzhou, China the estimate was 20% [35], in Beijing

23% [36], in Zhuhai 32% [37], in Seoul, South Korea 16% [38] and in Taiwan, around 5% [39].

In a small German town with a large outbreak due to a superspreading event at a carnival, the

household secondary attack rate was closer to 30% but decreased in larger households [40].

Liu et al considered a collection of known clusters involving close contacts in a single gathering

(not just household, often group meals), and estimated a 35% secondary attack rate. Lewis et al

find a rate of 28% in Wisconsin and Utah [41], while Grijalva et al found 53% in Wisconsin

and Tennessee [42]. A recent review by Madewell et al [43] reports values between 4–44%.

Curmei et al’s review [44] attempts to collect all these estimates and correct them upwards by

accounting for false negative rates of diagnostic tests and for asymptomatic infections, result-

ing in estimates between ~10–55%. Given that the average household size is relatively small in

all these countries (~3 or less), these numbers suggest that infection from outside the house

must play a large role in order to explain the overall R0 values observed. By varying the relative

weight of household vs external contacts, our study examined a range of household secondary

attack rates from ~10% to ~65%. Many more studies have examined the role of household

transmission in influenza spread, but the results are also equivocal: a review by Tsang et al

found that household secondary attack rates varied from 1–40% across studies [45]. A massive

cohort study from Japan recently shone some light on this complexity; finding that the risk of

household influenza transmission was highly dependent on household structure and on the

familial relationship between the primary and secondary case [46].

The networks we use to simulate infection were parameterized based on detailed surveys

that used “contact diaries” to track the number of individuals someone interacted with on a

randomly chosen day [20,21]. Contacts were generally defined as physical contact or face-to-

face conversations, and were meant to capture interactions thought to be important for the

spread of droplet-borne respiratory infections like influenza and coronaviruses. Like others,

the data we use from these studies is the average number of daily contacts by age of each indi-

vidual in the pair. However, these surveys also collected information on the duration and fre-

quency of contacts, which could be used in the future to create dynamic networks with a more

complex distribution of weights for each types of contact. One limitation of these sorts of
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surveys is that they are “ego-centric”, meaning that they only inform the distribution of the

number of contacts but not the higher order network structure, which can be important for

infection spread [26,47]. When we constructed our multi-layer network of external contacts,

we used additional information from other studies to include clustering and modularity in our

networks. Another limitation is that certain contacts that might be relevant to respiratory

infections may be missed in surveys. For example, transmission via contaminated surfaces can

occur between individuals who have never directly interacted, as can transmission in group

settings where air is shared (e.g. in fitness classes [48] or at restaurants [49]).

There are multiple strategies to augment social distancing policies by reducing household

spread, and these have been implemented to different degrees in different countries. We have

not considered such combination policies in our analysis, but other models have explored

them in detail. Household spread would be reduced by earlier diagnoses of cases (as soon as

symptoms begin), proactive testing of exposed household members of cases, options for out-

of-home care for individuals with mild symptoms, or better education and assistance with

individuals caring for sick household members to avoid infection, for example via household

use of face masks and disinfectants [36]. Population-level contact tracing initiatives would

obviously also help [50,51]. Early and influential modeling studies that provided the impetus

for widespread social distancing policies around the world assumed these policies would be

accompanied by case-based interventions that would reduce household spread (e.g. [11,52]),

but these measures have not been uniformly adopted, and are still completely absent in most

of the United States.

Clearly a major determinant of the efficacy of social distancing policies for COVID-19 is

the fractional reduction in contacts, but quantifying this value is difficult. A variety of data

sources can provide some information. Surveys conducted in Wuhan and Shanghai, China

comparing contacts before and after COVID-19 lockdowns found that the average number of

daily contacts was reduced from ~14 in Wuhan and ~20 in Shanghai to ~2, suggesting a more

than ~95% reduction in external contacts [53]. In the US, nationally-representative polls in

late March/early April found that around three quarters of households were self-isolating [54],

and estimated a mean reduction in contacts around 80% [55,56]. Since contact surveys are

rare, measures of reductions in human mobility have been used as a proxy for contact rate

reductions. Google [57] and Apple [58] provide reports on mobility changes based on user

locations sourced from their smartphone mapping apps, as does Cuebiq [59]. Transit, a live-

tracking and schedule-aggregating application for public transit, reports changes in service use

[60], and SafeGraph publishes changes in foot traffic to different classes of locations [61].

Different measures of mobility often give very different estimates for the efficacy of social

distancing interventions. For example, Klein et al found peak US national average reductions

in both the radius of mobility and the number of events where device users came within near

proximity of each other were about ~50%, whereas communing volume was reduced by ~75%

[62,63]. For the same time period, Apple reported ~50% reductions in direction requests,

Transit reported ~70% reduction in transit use, Google reported ~40% reductions in visits to

retail locations and ~50% in visits to workplaces, and SafeGraph reported an ~80% reduction

in foot traffic at bars but only a 20% reduction to grocery stores. Together these results suggest

that our simulations assuming ~80% reduction in external contacts—which still often only

results in mediocre outcomes—are likely overestimates, if anything, of reality. Wellenius et al

attempted to infer the association between these mobility reductions and the particular social

distancing policies that caused them. Using Google data they concluded that in the US, initial

emergency declarations lead to ~10% reductions, that each additional policy led to another

~20% reduction, and that “shelter-in-place” orders resulted in additional ~30% reductions

[64]. By comparing mobility changes to estimates of R0 from case counts in countries around
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the world, Bergman et al estimated that each ~10% reduction in mobility resulted in an ~0.05

reduction in R0 [65]. Interestingly, they also found two other results in agreement with our

findings here: there was a long delay between reductions in mobility and reductions in inferred

R0 in many regions, and, the association between reductions in mobility and R0 was weaker in

regions who implemented large scale contact tracing, which likely reduces household

transmission.

Our results highlight the importance of residual contacts between households that remain

despite social distancing measures. Many of these contacts are likely to be driven by individu-

als who must continue to work. Our own analysis of occupations held by residents of Philadel-

phia, USA, population ~1.5 million, suggested that ~30% of workers had jobs that fell into

categories flagged as “essential”. A review by Lan et al of case reports within the first month of

the outbreak in multiple countries found that about 15% of these cases were clearly work-

related, and that even earlier in the outbreak, this was as high as 50% [66]. A report released by

the UK Office of National Statistics found COVID-19 related deaths were much higher in cer-

tain occupational groups (e.g. relative risk of 4.5 for male security guards and 2 for female care

workers), and the UK Biobank found an 8x higher rate of COVID-19 diagnoses in healthcare

workers compared to the general population. Major clusters of infection have occurred in

workplaces as varied as call centers [38] and meatpacking plants [67]. The results of our

modeling show how risks to essential workers spill over to others, increasing the individual

infection risk for workers’ household members and increasing the persistence time of epidem-

ics in the community at large. Given the limited apparent ability to reduce workplace contacts

and transmission, reducing household transmission or other external contacts may be even

more important. Another strategy we have not considered is selective restructuring of contact

networks to increase clustering and decrease mean path length, so that transmission risk is

minimized without further reducing contacts [68].

Separate assumptions of our modeling approach could lead our predictions to be slightly

pessimistic. We assume a baseline value of R0 ~ 3, whereas some other studies have used values

between 1.9–2.7 [4–6,51,69]. There are several reasons why we believe those estimates are

likely a little too low. Firstly, they tended to assume very short serial intervals and infectious

periods, whereas other studies have estimated longer serial intervals [34,70–72], particularly in

the absence of quick isolation of mild cases, which is more likely to reflect what is going on in

most of the world outside of east Asia. Secondly, those estimates often fit to cases counts that

were doubling every 5–6 days, whereas in many settings doubling times were closer to 3 days

early in the outbreak [73–76]. Finally, nearly all previous estimates of R0 fit a randomly-mixing

population (with or without age structure), whereas in our highly structured network popula-

tion, higher R0 values are needed to achieve the same doubling time. R0 values as high as 3–6

have been estimated using rigorous model-fitting methods [9,52,72]. With lower R0 values,

any estimates of the % reduction in external contacts needed to achieve a certain rate of reduc-

tion of cases and deaths would be reduced. However, our main qualitative results about delays

to epidemic peak and the complex role of household transmission hold.

Our results are not sensitive to our assumptions about the fraction of cases that progress to

more serious clinical stages nor to the case fatality risk. However, our estimates for the timing

of peak values do depend on the distribution of delays we assume, for example between symp-

tom onset and hospitalization, or between ICU admission and death. There is variability in the

estimates of these values across studies (see Supplementary Methods), and these values likely

differ by country, depending on the standard of care and the underlying health of the popula-

tion. While we have considered wide intervals for the interpatient variation in these durations,

we have not propagated uncertainty in the distribution of these values. We hope that by pro-

viding our code, researchers who are interested in specific contexts where these values may
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differ significantly can explore those scenarios. There are other factors which influence the

delay between implementation of social distancing measures and peak cases and deaths that

we have not included in our model. One factor is reporting delays, which may be especially

long for deaths in certain regions. Another factor is that there could be a delay between imple-

mentation of distancing measures and adoption by a majority of the population.

By including more details of transmission network structure, we are able to examine effects

that would not be apparent in well-mixed epidemic models. However, our population struc-

ture is still simplistic in many senses. For example, we do not explicitly model the dynamics of

certain institutions that have been particularly hard-hit by COVID-19, such as retirement

homes and long-term care facilities [77], prisons [78,79], and homeless shelters [80]. Under-

standing the unique contact networks, transmission risks, host susceptibility, and mortality

risks in these populations is an important area for future research. We also do not consider the

potential for hospital-acquired transmission and the role of healthcare workers. Doctors,

nurses, and other health professionals are reported to make up 5–10% of cases in some regions,

and while increased testing is likely one factor driving these rates, it is clear that there are also

unique risks to this profession.

Strong social distancing measures tend to be economically costly and in most regions of the

world these measures were relaxed to some extent after a few months. In this study we exam-

ined a particular partial relaxation strategy in which households form “bubbles” with other

households. We predicted that widespread adoption of these bubbles should only occur in the

context of decreasing incidence and compensatory reductions in external contacts, in order to

maintain epidemic control. Here we imagine that household bubbles are formed voluntarily

for social reasons, but households may also be forced to “double-up” when one household

experiences eviction from their current residence. The economic recession in the US has led to

massive increases in households at risk of eviction, and separate work using a similar model

found that evictions could result in substantial increases in cases across cities if the current

eviction bans expire [81]. Other modeling studies have explored the impact of generalized

relaxation of social distancing on second-wave scenarios [82–85]. Although not the primary

focus of this work, when we simulate generalized relaxation we find that cases always begin to

increase almost immediately. This is in contrast to the months-long delays between relaxation

of interventions and resurgences of cases observed in many parts of Europe and North Amer-

ica in summer through fall 2020. In reality other factors not included in our model are likely to

play a role in observed delays post-relaxation, such as a delayed behavioral response to relaxa-

tion policies, shifting age distributions of cases, repeated stochastic re-introductions and

extinctions, and seasonality. We did observe variable delays until deaths and hospitalizations

began to increase again in our simulations, which was explained by the clinical progression

times and the degree of relaxation (S7 Fig).

Many studies are now attempting to estimate the degree to which different social distancing

measures (e.g. school closures, stay-at-home policies) reduce the reproductive ratio or the

exponential growth rate of cases. Our results point out a few challenges to these efforts. The

long delays we describe in this paper mean that methods that fit simple growth functions to

data and look for changes in their values may have trouble identifying effects. If there are a

series of interventions that tend to be implemented in similar orders or at similar intervals

across settings, and the goal is to estimate the effect of each (e.g. [11,86]), then the delays we

describe here could lead to falsely attributing the effect of one intervention to another that

occurs later (e.g. see [8] and comments in response). Some of these problems can be avoided

by explicit use of mathematical models that take into account the prolonged clinical progres-

sion of COVID-19 (e.g. [12,87]), which is the first order cause of these delays. However, our

results show that transmission network structure also plays an important role. Importantly,
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the amount by which overall transmission is reduced by social distancing measures and the

delay until effects are seen depends on the relative role of household vs external transmission,

which is unknown and may be different by setting.

Supporting information

S1 Text. Supplementary Methods.

(PDF)

S1 Fig. Creating hierarchical structuring in transmission networks via “neighborhoods”.

A) Schematic of the construction of the networks neighborhood clustering. Each household

belongs to a mutually-exclusive “neighborhood”, and external connections are preferentially

created within the same neighborhood. B-C) Visualizations of connections in the external

layer of the two-layer transmission network with and without neighborhood clustering. For

ease of visualization, this is plotted for a population size of 1000 with 10 “neighborhoods”

(node color) of size 100. In the real simulations, the population size is 106 with 100 neighbor-

hoods of size 10,000. A) The external layer consists of random connections between individu-

als, irrespective of their neighborhoods. B) 90% of external connections are preferentially

attached to individuals within their own neighborhood, creating more intermediate-scale clus-

tering in the network.

(TIF)

S2 Fig. Dynamics pre and post social distancing interventions in network-structured popu-

lations with household and external transmission, with neighborhood clustering. A) Multi-

layer network of transmission. Individuals have contacts within their households and with oth-

ers outside the household, which preferentially occur within a local neighborhood (S1 Fig).

Household and external contacts may have different weights (e.g. different likelihood of trans-

mission), due to for example different levels of physical contact or time spent together per day.

Social distancing interventions (red X) remove or decrease the weight of external contacts. B)

Distribution of household sizes. C) Distribution of the # of contacts (degree) within the house-

hold and outside the household. D) The contribution of household and external spread to the

total R0 value as a function of the relative weight of external contacts. E)-F) Simulated time

course of different clinical stages of infection under an intervention with efficacy of 100% (E)

or 80% (F) at reducing external contacts, when household and external contacts have equal

weight. Black dotted line shows the time the intervention began. G) The role of the relative

importance of household vs external contacts in determining the outcome of the intervention,

measured by the size of the epidemic. Epidemic final size is defined as the percent of the popu-

lation who have recovered by day 300. H-J) Same as above but under the scenario where the

weight of household contacts doubles post-intervention (wHH! 2wHH, due to increased time

spent in house). K) The household secondary attack rate, defined as the probability of trans-

mission per susceptible household member when there is a single infected individual in the

house, as a function of the relative weight of external contacts. L) The percent of households

which are “seeded” with infection at the time the intervention was implemented (i.e. have at

least one infected individual). In all scenarios the overall infection prevalence at the time inter-

vention was started was identical.

(TIF)

S3 Fig. Clustered vs uniform adoption of social distancing measures, with lower efficacy.

A) Schematic of the multi-layer network created to more realistically capture non-household

contacts and how they are altered by social distancing measures. In each layer, the degree dis-

tribution and level of clustering were chosen to match data. The “community” layer represents
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any other contact not fitting in the other four categories. Colors of nodes represent four broad

age groups that determine network membership and structure: preschool-aged (pink), school-

aged (purple), working-aged (blue) and elderly (green). B)—C) Simulated time courses of

infection in the presence of social distancing intervention with random (B) vs clustered (C)

adherence to measures. In both cases, all school connections were deleted post-intervention

and 70% of connections were uniformly deleted at random in the social and community layers.

In B) 70% of work connections were uniformly deleted whereas, in C) 70% of workplaces were

dissolved, leading to clusters of disconnected vs connected individuals in the work layer of the

network. The effective intervention efficacy for all layers combined was ~ 75% in both scenar-

ios. Black dotted line shows the time the intervention began.

(TIF)

S4 Fig. Clustered vs uniform adoption of social distancing measures, with neighborhood

clustering. A) Schematic of the multi-layer network created to more realistically capture non-

household contacts and how they are altered by social distancing measures. In each layer, the

degree distribution and level of clustering were chosen to match data. The “community” layer

represents any other contact not fitting in the other four categories. Colors of nodes represent

four broad age groups that determine network membership and structure: preschool-aged

(pink), school-aged (purple), working-aged (blue) and elderly (green). Community and school

connections occurred within local neighborhoods. B)—E) Simulated time courses of infection

in the presence of social distancing intervention with random (B,D) vs clustered (C,E) adher-

ence to measures. In both cases, all school connections were deleted post-intervention and

85% (top) or 70% (bottom) of connections were uniformly deleted at random in the social and

community layers. In B) 85% (top) or 70% (bottom) of work connections were uniformly

deleted whereas, in C) 85% (top) or 70% (bottom) of workplaces were dissolved, leading to

clusters of disconnected vs connected individuals in the work layer of the network. The effec-

tive intervention efficacy for all layers combined was ~ 88% (top) or ~75% (bottom) in both

scenarios. Black dotted line shows the time the intervention began.

(TIF)

S5 Fig. Effect of partially relaxing intervention by forming household bubbles, with neigh-

borhood clustering. Some time after a social distancing intervention was implemented, each

household merges with another random household irrespective of their “neighborhood”. In

each resulting two-household “bubble”, all individuals are connected to all other individuals.

A)-D) Simulated time courses of infection before and after social distancing interventions

(with 80% vs 90% intervention efficacy) and after partial-relaxation by household merging.

Top row: External contacts of individuals were unchanged after two households were merged,

such that overall number of contacts increased. Bottom row: External contacts for individuals

were reduced after two households were merged, such that overall number of contacts

remained unchanged. In all cases, intervention was started 43 days after the onset of the epi-

demic (first black dotted line) and was relaxed after two months (60 days, second black dotted

line).

(TIF)

S6 Fig. Effect of partially relaxing intervention by forming household bubbles, with neigh-

borhood clustering. Some time after a social distancing intervention was implemented, each

household merges with another household from their own “neighborhood”. In each resulting

two-household “bubble”, all individuals are connected to all other individuals. A)-D) Simu-

lated time courses of infection before and after social distancing interventions (with 80% vs

90% intervention efficacy) and after partial-relaxation by household merging. Top row:
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External contacts of individuals were unchanged after two households were merged, such that

overall number of contacts increased. Bottom row: External contacts for individuals were

reduced after two households were merged, such that overall number of contacts remained

unchanged. In all cases, intervention was started 43 days after the onset of the epidemic (first

black dotted line) and was relaxed after two months (60 days, second black dotted line).

(TIF)

S7 Fig. Effects of generalized relaxation of social distancing measures. Simulated time

course of different clinical stages of infection under an initial intervention that reduces con-

tacts (first black dashed line) and subsequent relaxation of that intervention (second black

dashed line). Plots show daily incidence as a fraction of the total population. Solid line is mean

and shaded areas are 5th and 95th percentile. Results are shown for different values of the effi-

cacy of the initial intervention, efficacy during relaxation, and the timing of relaxation. The

efficacy of the initial intervention and relaxation are defined as the % reduction in external

contacts. In all plots, household and external contacts have equal weight. Plot annotations

report the median time post-relaxation until different metrics of disease burden begin to

increase—the daily incidence of new cases, current hospitalizations, or daily deaths. If deaths

go to zero under an intervention, we instead report median time post-intervention to first

death.

(TIF)

S8 Fig. Time-varying effective reproduction number under social distancing. Top row:

Simulated time course of different clinical stages of infection under an intervention (first black

dashed line) that reduces external contacts by 80%, for different values of the relative weight of

external contacts. Plots show daily incidence (for a total population of 1 million). Solid line is

mean and shaded areas are 5th and 95th percentile of 100 simulations. Second row: Effective

reproduction number (Rt) over time calculated using the daily incidence of new infections (I1)

for each simulation, calculated using the EpiEstim method with a 7-day window. The Rt value

plotted for day t is calculated using timepoints before t only. Third row: Same but using the

daily incidence of new hospitalizations (I2). Bottom row: The first timepoint after the interven-

tion that Rt<1. Dots show the median and bars represent 5th and 95th percentiles.

(TIF)
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40. Streeck H, Schulte B, Kümmerer BM, Richter E, Höller T, Fuhrmann C, et al. Infection fatality rate of

SARS-CoV2 in a super-spreading event in Germany. Nat Commun. 2020; 11: 5829. https://doi.org/10.

1038/s41467-020-19509-y PMID: 33203887

41. Lewis NM, Chu VT, Ye D, Conners EE, Gharpure R, Laws RL, et al. Household Transmission of SARS-

CoV-2 in the United States. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa1166 PMID: 33185244

42. Grijalva CG. Transmission of SARS-COV-2 Infections in Households—Tennessee and Wisconsin,

April–September 2020. MMWR Morb Mortal Wkly Rep. 2020; 69. https://doi.org/10.15585/mmwr.

mm6944e1 PMID: 33151916

43. Madewell ZJ, Yang Y, Longini IM, Halloran ME, Dean NE. Household Transmission of SARS-CoV-2.

JAMA Netw Open. 2020; 3. https://doi.org/10.1001/jamanetworkopen.2020.31756 PMID: 33315116

44. Curmei M, Ilyas A, Evans O, Steinhardt J. Estimating Household Transmission of SARS-CoV-2. medR-

xiv. 2020; 2020.05.23.20111559. https://doi.org/10.1101/2020.05.23.20111559

45. Tsang TK, Lau LLH, Cauchemez S, Cowling BJ. Household Transmission of Influenza Virus. Trends

Microbiol. 2016; 24: 123–133. https://doi.org/10.1016/j.tim.2015.10.012 PMID: 26612500

46. Endo A, Uchida M, Kucharski AJ, Funk S. Fine-scale family structure shapes influenza transmission

risk in households: Insights from primary schools in Matsumoto city, 2014/15. PLOS Comput Biol. 2019;

15: e1007589. https://doi.org/10.1371/journal.pcbi.1007589 PMID: 31877122

47. Miller JC. Spread of infectious disease through clustered populations. J R Soc Interface. 2009; 6: 1121–

1134. https://doi.org/10.1098/rsif.2008.0524 PMID: 19324673

48. Jang S, Han SH, Rhee J-Y. Cluster of Coronavirus Disease Associated with Fitness Dance Classes,

South Korea. Emerg Infect Dis J. 2020; 26. https://doi.org/10.3201/eid2608.200633 PMID: 32412896

49. Lu J, Gu J, Li K, Xu C, Su W, Lai Z, et al. COVID-19 Outbreak Associated with Air Conditioning in Res-

taurant, Guangzhou, China, 2020. Emerg Infect Dis J. 2020; 26. https://doi.org/10.3201/eid2607.

200764 PMID: 32240078

50. Peak CM, Kahn R, Grad YH, Childs LM, Li R, Lipsitch M, et al. Individual quarantine versus active moni-

toring of contacts for the mitigation of COVID-19: a modelling study. Lancet Infect Dis. 2020; 0. https://

doi.org/10.1016/S1473-3099(20)30361-3 PMID: 32445710

51. Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dörner L, et al. Quantifying SARS-CoV-2

transmission suggests epidemic control with digital contact tracing. Science. 2020. https://doi.org/10.

1126/science.abb6936 PMID: 32234805

52. Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. High Contagiousness and Rapid

Spread of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg Infect Dis J. 2020; 26. https://doi.

org/10.3201/eid2607.200282 PMID: 32255761

53. Zhang J, Litvinova M, Liang Y, Wang Y, Wang W, Zhao S, et al. Changes in contact patterns shape the

dynamics of the COVID-19 outbreak in China. Science. 2020. https://doi.org/10.1126/science.abb8001

PMID: 32350060

54. Gallup, Inc. Three in Four in U.S. Have Self-Isolated in Their Household. In: Gallup.com [Internet]. 8 Apr

2020 [cited 31 May 2020]. Available: https://news.gallup.com/poll/307760/three-four-self-isolated-

household.aspx

55. Gallup, Inc. Americans’ Social Contacts During the COVID-19 Pandemic. In: Gallup.com [Internet]. 21

Apr 2020 [cited 31 May 2020]. Available: https://news.gallup.com/opinion/gallup/308444/americans-

social-contacts-during-covid-pandemic.aspx

56. Feehan D, Mahmud A. Quantifying population contact patterns in the United States during the COVID-

19 pandemic. medRxiv. 2020; 2020.04.13.20064014. https://doi.org/10.1101/2020.04.13.20064014

57. COVID-19 Community Mobility Report. In: Google [Internet]. [cited 1 Jun 2020]. Available: https://www.

google.com/covid19/mobility?hl = en

58. COVID-19—Mobility Trends Reports. In: Apple [Internet]. [cited 1 Jun 2020]. Available: https://www.

apple.com/covid19/mobility

59. Kunkel C. COVID-19 Mobility Insights. In: Cuebiq [Internet]. [cited 14 Apr 2020]. Available: https://www.

cuebiq.com/visitation-insights-covid19/

60. How coronavirus is disrupting public transit. In: Transit App [Internet]. [cited 1 Jun 2020]. Available:

https://transitapp.com/coronavirus

61. U.S. Consumer Activity During COVID-19 Pandemic. In: SafeGraph [Internet]. [cited 1 Jun 2020]. Avail-

able: https://safegraph.com/dashboard/

PLOS COMPUTATIONAL BIOLOGY COVID-19 transmission network determines success of social distancing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008684 February 3, 2021 24 / 26

https://doi.org/10.1001/jamainternmed.2020.2020
http://www.ncbi.nlm.nih.gov/pubmed/32356867
https://doi.org/10.1038/s41467-020-19509-y
https://doi.org/10.1038/s41467-020-19509-y
http://www.ncbi.nlm.nih.gov/pubmed/33203887
https://doi.org/10.1093/cid/ciaa1166
http://www.ncbi.nlm.nih.gov/pubmed/33185244
https://doi.org/10.15585/mmwr.mm6944e1
https://doi.org/10.15585/mmwr.mm6944e1
http://www.ncbi.nlm.nih.gov/pubmed/33151916
https://doi.org/10.1001/jamanetworkopen.2020.31756
http://www.ncbi.nlm.nih.gov/pubmed/33315116
https://doi.org/10.1101/2020.05.23.20111559
https://doi.org/10.1016/j.tim.2015.10.012
http://www.ncbi.nlm.nih.gov/pubmed/26612500
https://doi.org/10.1371/journal.pcbi.1007589
http://www.ncbi.nlm.nih.gov/pubmed/31877122
https://doi.org/10.1098/rsif.2008.0524
http://www.ncbi.nlm.nih.gov/pubmed/19324673
https://doi.org/10.3201/eid2608.200633
http://www.ncbi.nlm.nih.gov/pubmed/32412896
https://doi.org/10.3201/eid2607.200764
https://doi.org/10.3201/eid2607.200764
http://www.ncbi.nlm.nih.gov/pubmed/32240078
https://doi.org/10.1016/S1473-3099%2820%2930361-3
https://doi.org/10.1016/S1473-3099%2820%2930361-3
http://www.ncbi.nlm.nih.gov/pubmed/32445710
https://doi.org/10.1126/science.abb6936
https://doi.org/10.1126/science.abb6936
http://www.ncbi.nlm.nih.gov/pubmed/32234805
https://doi.org/10.3201/eid2607.200282
https://doi.org/10.3201/eid2607.200282
http://www.ncbi.nlm.nih.gov/pubmed/32255761
https://doi.org/10.1126/science.abb8001
http://www.ncbi.nlm.nih.gov/pubmed/32350060
https://news.gallup.com/poll/307760/three-four-self-isolated-household.aspx
https://news.gallup.com/poll/307760/three-four-self-isolated-household.aspx
https://news.gallup.com/opinion/gallup/308444/americans-social-contacts-during-covid-pandemic.aspx
https://news.gallup.com/opinion/gallup/308444/americans-social-contacts-during-covid-pandemic.aspx
https://doi.org/10.1101/2020.04.13.20064014
https://www.google.com/covid19/mobility?hl
https://www.google.com/covid19/mobility?hl
https://www.apple.com/covid19/mobility
https://www.apple.com/covid19/mobility
https://www.cuebiq.com/visitation-insights-covid19/
https://www.cuebiq.com/visitation-insights-covid19/
https://transitapp.com/coronavirus
https://safegraph.com/dashboard/
https://doi.org/10.1371/journal.pcbi.1008684


62. Klein B, LaRock T, McCabe S, Torres L, Privitera F, Lake B, et al. Reshaping a nation: Mobility, com-

muting, and contact patterns during the COVID-19 outbreak.: 17.

63. COVID-19 Mobility United States. In: Gleam Project [Internet]. [cited 1 Jun 2020]. Available: https://

covid19.gleamproject.org/mobility

64. Wellenius GA, Vispute S, Espinosa V, Fabrikant A, Tsai TC, Hennessy J, et al. Impacts of State-Level

Policies on Social Distancing in the United States Using Aggregated Mobility Data during the COVID-19

Pandemic. ArXiv200410172 Q-Bio. 2020 [cited 23 May 2020]. Available: http://arxiv.org/abs/2004.

10172

65. Bergman NK, Fishman R. Mobility Levels and Covid-19 Transmission Rates. medRxiv. 2020;

2020.05.06.20093039. https://doi.org/10.1101/2020.05.06.20093039

66. Lan F-Y, Wei C-F, Hsu Y-T, Christiani DC, Kales SN. Work-related COVID-19 transmission in six Asian

countries/areas: A follow-up study. PLOS ONE. 2020; 15: e0233588. https://doi.org/10.1371/journal.

pone.0233588 PMID: 32428031

67. Dyal JW. COVID-19 Among Workers in Meat and Poultry Processing Facilities—19 States, April 2020.

MMWR Morb Mortal Wkly Rep. 2020; 69. https://doi.org/10.15585/mmwr.mm6918e3 PMID: 32379731

68. Block P, Hoffman M, Raabe IJ, Dowd JB, Rahal C, Kashyap R, et al. Social network-based distancing

strategies to flatten the COVID-19 curve in a post-lockdown world. Nat Hum Behav. 2020; 4: 588–596.

https://doi.org/10.1038/s41562-020-0898-6 PMID: 32499576

69. Wu JT, Leung K, Bushman M, Kishore N, Niehus R, de Salazar PM, et al. Estimating clinical severity of

COVID-19 from the transmission dynamics in Wuhan, China. Nat Med. 2020; 1–5. https://doi.org/10.

1038/s41591-019-0740-8 PMID: 31932805

70. Lavezzo E, Franchin E, Ciavarella C, Cuomo-Dannenburg G, Barzon L, Del Vecchio C, et al. Suppres-

sion of a SARS-CoV-2 outbreak in the Italian municipality of Vo’. Nature. 2020. https://doi.org/10.1038/

s41586-020-2488-1 PMID: 32604404

71. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of

Novel Coronavirus–Infected Pneumonia. N Engl J Med. 2020; 0: null. https://doi.org/10.1056/

NEJMoa2001316 PMID: 31995857

72. Ali ST, Wang L, Lau EHY, Xu X-K, Du Z, Wu Y, et al. Serial interval of SARS-CoV-2 was shortened over

time by nonpharmaceutical interventions. Science. 2020. https://doi.org/10.1126/science.abc9004

PMID: 32694200

73. Ke R, Sanche S, Romero-Severson E, Hengartner N. Fast spread of COVID-19 in Europe and the US

suggests the necessity of early, strong and comprehensive interventions. medRxiv. 2020;

2020.04.04.20050427. https://doi.org/10.1101/2020.04.04.20050427 PMID: 32511619

74. Abbott S. Temporal variation in transmission during the COVID-19 outbreak. In: CMMID Repository

[Internet]. 2 Mar 2020 [cited 9 Mar 2020]. Available: https://cmmid.github.io/topics/covid19/current-

patterns-transmission/global-time-varying-transmission.html

75. Romero-Severson EO, Hengartner N, Meadors G, Ke R. Change in global transmission rates of

COVID-19 through May 6 2020. PLOS ONE. 2020; 15: e0236776. https://doi.org/10.1371/journal.pone.

0236776 PMID: 32760158

76. Hsiang S, Allen D, Annan-Phan S, Bell K, Bolliger I, Chong T, et al. The effect of large-scale anti-conta-

gion policies on the COVID-19 pandemic. Nature. 2020; 584: 262–267. https://doi.org/10.1038/s41586-

020-2404-8 PMID: 32512578

77. Gmehlin CG, Munoz-Price LS. Coronavirus disease 2019 (COVID-19) in long-term care facilities: A

review of epidemiology, clinical presentations, and containment interventions. Infect Control Hosp Epi-

demiol. 2020; 1–6. https://doi.org/10.1017/ice.2020.1292 PMID: 33100245

78. The Marshall Project. A State-by-State Look at Coronavirus in Prisons. The Marshall Project; 2020 Oct.

Available: https://www.themarshallproject.org/2020/05/01/a-state-by-state-look-at-coronavirus-in-

prisons

79. Lofgren E, Lum K, Horowitz A, Madubuonwu B, Myers K, Fefferman NH. The Epidemiological Implica-

tions of Jails for Community, Corrections Officer, and Incarcerated Population Risks from COVID-19.

medRxiv. 2021; 2020.04.08.20058842. https://doi.org/10.1101/2020.04.08.20058842

80. Lewer D, Braithwaite I, Bullock M, Eyre MT, White PJ, Aldridge RW, et al. COVID-19 among people

experiencing homelessness in England: a modelling study. Lancet Respir Med. 2020;0. https://doi.org/

10.1016/S2213-2600(20)30396-9 PMID: 32979308

81. Nande A, Sheen J, Walters EL, Klein B, Chinazzi M, Gheorghe A, et al. The effect of eviction moratoria

on the transmission of SARS-CoV-2. medRxiv. 2021; 2020.10.27.20220897. https://doi.org/10.1101/

2020.10.27.20220897 PMID: 33140067

PLOS COMPUTATIONAL BIOLOGY COVID-19 transmission network determines success of social distancing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008684 February 3, 2021 25 / 26

https://covid19.gleamproject.org/mobility
https://covid19.gleamproject.org/mobility
http://arxiv.org/abs/2004.10172
http://arxiv.org/abs/2004.10172
https://doi.org/10.1101/2020.05.06.20093039
https://doi.org/10.1371/journal.pone.0233588
https://doi.org/10.1371/journal.pone.0233588
http://www.ncbi.nlm.nih.gov/pubmed/32428031
https://doi.org/10.15585/mmwr.mm6918e3
http://www.ncbi.nlm.nih.gov/pubmed/32379731
https://doi.org/10.1038/s41562-020-0898-6
http://www.ncbi.nlm.nih.gov/pubmed/32499576
https://doi.org/10.1038/s41591-019-0740-8
https://doi.org/10.1038/s41591-019-0740-8
http://www.ncbi.nlm.nih.gov/pubmed/31932805
https://doi.org/10.1038/s41586-020-2488-1
https://doi.org/10.1038/s41586-020-2488-1
http://www.ncbi.nlm.nih.gov/pubmed/32604404
https://doi.org/10.1056/NEJMoa2001316
https://doi.org/10.1056/NEJMoa2001316
http://www.ncbi.nlm.nih.gov/pubmed/31995857
https://doi.org/10.1126/science.abc9004
http://www.ncbi.nlm.nih.gov/pubmed/32694200
https://doi.org/10.1101/2020.04.04.20050427
http://www.ncbi.nlm.nih.gov/pubmed/32511619
https://cmmid.github.io/topics/covid19/current-patterns-transmission/global-time-varying-transmission.html
https://cmmid.github.io/topics/covid19/current-patterns-transmission/global-time-varying-transmission.html
https://doi.org/10.1371/journal.pone.0236776
https://doi.org/10.1371/journal.pone.0236776
http://www.ncbi.nlm.nih.gov/pubmed/32760158
https://doi.org/10.1038/s41586-020-2404-8
https://doi.org/10.1038/s41586-020-2404-8
http://www.ncbi.nlm.nih.gov/pubmed/32512578
https://doi.org/10.1017/ice.2020.1292
http://www.ncbi.nlm.nih.gov/pubmed/33100245
https://www.themarshallproject.org/2020/05/01/a-state-by-state-look-at-coronavirus-in-prisons
https://www.themarshallproject.org/2020/05/01/a-state-by-state-look-at-coronavirus-in-prisons
https://doi.org/10.1101/2020.04.08.20058842
https://doi.org/10.1016/S2213-2600%2820%2930396-9
https://doi.org/10.1016/S2213-2600%2820%2930396-9
http://www.ncbi.nlm.nih.gov/pubmed/32979308
https://doi.org/10.1101/2020.10.27.20220897
https://doi.org/10.1101/2020.10.27.20220897
http://www.ncbi.nlm.nih.gov/pubmed/33140067
https://doi.org/10.1371/journal.pcbi.1008684


82. Aleta A, Martı́n-Corral D, Pastore y Piontti A, Ajelli M, Litvinova M, Chinazzi M, et al. Modelling the

impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nat Hum

Behav. 2020; 1–8. https://doi.org/10.1038/s41562-020-0818-9 PMID: 31965067

83. Panovska-Griffiths J, Kerr CC, Stuart RM, Mistry D, Klein DJ, Viner RM, et al. Determining the optimal

strategy for reopening schools, the impact of test and trace interventions, and the risk of occurrence of a

second COVID-19 epidemic wave in the UK: a modelling study. Lancet Child Adolesc Health. 2020;0.

https://doi.org/10.1016/S2352-4642(20)30250-9 PMID: 32758453

84. Leung K, Wu JT, Liu D, Leung GM. First-wave COVID-19 transmissibility and severity in China outside

Hubei after control measures, and second-wave scenario planning: a modelling impact assessment.

The Lancet. 2020; 395: 1382–1393. https://doi.org/10.1016/S0140-6736(20)30746-7 PMID: 32277878

85. Reiner RC, Barber RM, Collins JK, Zheng P, Adolph C, Albright J, et al. Modeling COVID-19 scenarios

for the United States. Nat Med. 2020; 1–12. https://doi.org/10.1038/s41591-019-0740-8 PMID:

31932805

86. Banholzer N, Weenen E van, Kratzwald B, Seeliger A, Tschernutter D, Bottrighi P, et al. Impact of non-

pharmaceutical interventions on documented cases of COVID-19. medRxiv. 2020;

2020.04.16.20062141. https://doi.org/10.1101/2020.04.16.20062141

87. Kohanovski I, Obolski U, Ram Y. Inferring the effective start dates of non-pharmaceutical interventions

during COVID-19 outbreaks. medRxiv. 2020; 2020.05.24.20092817. https://doi.org/10.1101/2020.05.

24.20092817

PLOS COMPUTATIONAL BIOLOGY COVID-19 transmission network determines success of social distancing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008684 February 3, 2021 26 / 26

https://doi.org/10.1038/s41562-020-0818-9
http://www.ncbi.nlm.nih.gov/pubmed/31965067
https://doi.org/10.1016/S2352-4642%2820%2930250-9
http://www.ncbi.nlm.nih.gov/pubmed/32758453
https://doi.org/10.1016/S0140-6736%2820%2930746-7
http://www.ncbi.nlm.nih.gov/pubmed/32277878
https://doi.org/10.1038/s41591-019-0740-8
http://www.ncbi.nlm.nih.gov/pubmed/31932805
https://doi.org/10.1101/2020.04.16.20062141
https://doi.org/10.1101/2020.05.24.20092817
https://doi.org/10.1101/2020.05.24.20092817
https://doi.org/10.1371/journal.pcbi.1008684

