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1. Image Data

In this section, we provide additional detail on the methodology
used to acquire annotated image data for our study. This data
is required for two steps: to train computer vision models
that detect and classify cars, and to apply these models on
Street View images of cities of interest. This section proceeds
by detailing how we obtained a comprehensive list of car
categories, collected a large number of “product shot” images
used to train our car classifier, gathered 50 million Street
View images used in our analysis, and annotated a subset
for training and verifying our model. We conclude with a
complete description of the acquired metadata for each car
category.

Car Categories. The first step in assembling a dataset of an-
notated car images is grouping cars into sets of visually indis-
tinguishable classes. For example, while a 2003 Honda Accord
coupe ex and a 2005 Honda Accord coupe ls special edition are
manufactured in different years and have different trims (ex vs
ls special edition), their exteriors look identical. Thus, these
two cars should be grouped into the same class. Ideally, the set
of classes would contain every type of car in common use. (1)
presents a workflow to perform this grouping at minimal cost.

We first retrieved an initial list of 15,213 car types from
the car website Edmunds.com, collected in August 2012. This
forms a generally complete list of all cars commonly used
in the United States that were produced from 1990 onward.
Throughout this document we use the term “car” to refer to
all types of automobiles with four wheels, including sedans,
coupes, trucks, vans, SUVs, etc., but not including e.g. semi-
trucks or buses.

As a first step toward grouping these categories into a
smaller number of visually distinct classes, we used Amazon
Mechanical Turk (AMT) to determine whether certain pairs
of the 15k car types were distinguishable. The interface is
shown in Fig. S10. Within each task we gave six pairs of
categories and the user was prompted to determine 1) if the
two classes had any visual differences, and 2) if they were
different, on which parts they differed. Within each task we
had two pairs for which we already knew the correct answer (as
determined by hand), and we required that each user on AMT
get the answer for those pairs correct in order to count their
response. Photos for this task were acquired from the handful
of example images that Edmunds.com provides. The authors
cleaned up the data by hand, resulting in 3,141 categories
of cars, with extremely subtle differences between these fine-
grained categories. Fig. S11 shows two examples of classes
with their constituent groups.

Product Shot Images. After assembling a list of categories
consisting of visually indistinguishable sets of cars, we collected
training images for each class. These are annotated images
containing the car of interest. A commonly used method in the
computer vision community is to perform web image searches
for each category and cleanup the query images by hand to
ensure that they contain the category of interest (2). However,
the large number of classes in our dataset makes it infeasible
to manually perform this task.

In order to collect training data in a scalable manner, we
leveraged e-commerce websites. We crawled images from
cars.com and craigslist.org, two sites where users are heavily

incentivized to list the exact type of car they are selling. While
these users are not necessarily car experts, they have detailed
knowledge about their own car. In the case of cars.com, car
categories are represented in a very structured format. Thus,
after establishing a mapping between our categories and their
format, we were able to simply scrape images for each category.
For craigslist.org, we scraped posts from the “cars+trucks”
listings of a variety of U.S. regions, and parsed the post titles
to determine which of our categories the posts belonged to.
Since these images are from websites with the purpose of
selling cars, we call them “product shot” images.

Some product shot images show the car from an extremely
close-up angle. Others only depict the interior of the car
(Fig. S12). Since our purpose is to recognize cars in Google
Street View images, our training set should have cars from
view points that can appear in Street View. Thus, we filtered
out images which do not contain one central automobile, with
its exterior depicted in its entirety. Since this task is relatively
simple, we crowdsourced it via AMT, using (3) for quality
control. Our interface for this task is shown in Fig. S13.

In the final annotation step, we collected a bounding box (an
axis-aligned rectangle tightly enclosing the object of interest)
around the car in each image. This ensures that our car
classifier is trained using visual information only from the car
itself and not extraneous background. Bounding boxes were
collected using the labeling methodology and UI of (4), but
without the step for determining if there is more than one car
in the image. That step is not necessary because the output
of the previous AMT task ensures that each image contains
exactly one prominent car.

Since some types of cars have many more images than
others, we stopped annotating images for each category after
collecting 200 labeled photos. Our goal is to build a model
that can recognize as many types of cars as possible. Given
our limited budget, it is more important to collect annotations
for categories with few labeled images than for those with
many annotated photos.

In the final step, we removed categories that do not have
at least three disparate sources of data per class. We define
one source of data as one post on any of the websites we used.
This process resulted in our final dataset consisting of 2,657
car categories.

Street View Images. This section outlines our methodology for
collecting approximately 50 million Google Street View images
and annotating a subset of them to train our car detector
and classifier. The process includes selecting GPS (latitude,
longitude) points of interest, collecting images for each of
these points, enclosing cars in a subset of these images with
bounding boxes, and annotating the type of car contained in
each box. The final step is performed by car experts.

Selecting GPS Points. Before gathering Google Street View im-
ages, we first have to determine which geographical (latitude,
longitude) points we want to collect photos for. We call each
latitude, longitude pair a GPS point. First, we select 200
cities for our analysis. These are the two largest cities in each
state and the next 100 largest cities in the United States as
determined by population (see Tab. S1 for a complete list).
For each city, we sample potential points of interest within
a square grid of length 20km, centered on one point known
to lie within the city. There is a 25 meter spacing between

2 of 58 Timnit Gebru, Jonathan Krause, Yilun Wang, Duyun Chen, Jia Deng, Erez Lieberman Aiden, Li Fei-Fei



points. We reverse geocode each of these points to determine
whether they lie within the city of interest and how far away
they are to the nearest road. We keep all points within 12.5
meters of the nearest road. This process did not provide full
coverage for a handful of cities. Thus, we augmented these
points with GPS samples from road data provided by the U.S.
Census Bureau (5).

Sampling Images from Street View. For each GPS point, we at-
tempt to sample 6 images from Google Street View, one for
each of 6 different camera rotations. This was done via browser
emulation and requires only the latitude and longitude of each
point. However, we cannot immediately use photos retrieved
with this process as they appear warped: an equirectangular
projection is applied to images in a spherical panorama. We
apply the reverse transformation before all subsequent tasks
using the images (see Fig. S14 for an example).

Annotations on Amazon Mechanical Turk. While our product shot
images can be used to train a car classifier, we cannot utilize
them to train a car detector: a model that learns to localize
all the cars in an image. This is because all of our product
shot images include only one prominently featured car in each
image.

Using the system of (4), we collected bounding box anno-
tations in a subset of our Street View images. To increase
the efficiency of this process, we first filtered out all images
containing either zero or more than 10 cars via AMT, using the
same interface and pipeline described in the section pertaining
to product shot images. A randomly selected subset of 399,331
Street View images were annotated in this manner. We found
that 26.6% of images were annotated as having no visible cars
and 12.4% had more than 10 cars. The distribution of the
number of cars in the remaining images is shown in Fig. S6A.

Fig. S6B plots bounding box size versus location. Cars
located closer to the bottom of the image tend to occupy
more space than those near the top. This agrees with the
intuition that cars lower in the image are closer to the camera
and therefore appear larger. Similarly, Fig. S6C shows a
heatmap of bounding box location for cars in Street View.
Most automobiles are located near the horizon line because
that part of the image occupies more 3D space, i.e., more space
in the real world. There is a sharp dropoff in the distribution
of cars above the horizon line.

Expert Class Annotations. To learn to recognize automobiles in
Street View images, a classifier needs to be trained with cars
from these images. To this end, we labeled a subset of the
bounding boxes from Street View images with the types of
cars contained in them. This annotated data also enables us
to quantitatively evaluate how well our classifier works. In
contrast to product shot images, we do not know the types
of cars contained in Street View photos. Therefore, we hired
expert car annotators to label these images. Experts were pri-
marily solicited via Craigslist ads. Those who were interested
in performing our task were first asked to annotate cars in
Street View images for one hour, and only those who could
annotate at a speed of 1 car per minute and a precision of at
least 80% were allowed to annotate further. 110 expert human
annotators worked for a total of approximately two thousand
hours to label our images.

Very small images typically do not contain enough visual
information to discriminate fine levels of detail. Thus, anno-

tators were only shown cars in bounding boxes whose height
exceeded 50 pixels. 32.89% of bounding boxes in our dataset
fulfill this criteria. The annotation task itself proceeded hierar-
chically: Fig. S15 shows the user interface for the task. Given a
Street View bounding box, annotators were first asked to select
the make of the car (Fig. S15(A)). They were then presented
with a list of body types for the chosen make (Fig. S15(B)).
After selecting the right body type, experts were shown a list
of options for the car model, and finally, the trims and years
associated with each model.

Since differences between categories can be extremely sub-
tle at that final level, we also provided example images
from each trim and year grouping for the annotator’s benefit
(Fig. S15(C)). At any point in the process, the annotator could
declare that he or she did not have enough information to
make a selection. Thus, each label at this finest level of detail
represents a confident selection by a car expert. We collected
a total of 69,562 car category annotations in this manner.

Car Metadata. In addition to the images, category labels, and
bounding boxes, we also have metadata pertaining to each
class, listed below.

• Make: The make of the car, of 58 possible makes. The
makes we consider are: Acura, AM General, Aston
Martin, Audi, Bentley, BMW, Buick, Cadillac, Chevro-
let, Chrysler, Daewoo, Dodge, Eagle, Ferrari, Fiat,
Fisker, Ford, Geo, GMC, Honda, Hummer, Hyundai,
Infiniti, Isuzu, Jaguar, Jeep, Kia, Lamborghini, Land
Rover, Lexus, Lincoln, Lotus, Maserati, Maybach, Mazda,
McLaren, Mercedes-Benz, Mercury, Mini, Mitsubishi, Nis-
san, Oldsmobile, Panoz, Plymouth, Pontiac, Porsche,
Ram, Rolls-Royce, Saab, Saturn, Scion, Smart, Subaru,
Suzuki, Tesla, Toyota, Volkswagen, and Volvo.

• Model: The model of the car, of 777 possible models.

• Year: The manufacturing year of the automobile. Since
cars might not change appearance over a small number
of years, this is typically listed as a range of years. The
minimum year in our dataset is 1990, and the maximum
year is 2014.

• Body Type: The body type of the car. The 11 possible
values are: convertible, coupe, hatchback, minivan, sedan,
SUV, truck (regular-sized cab), truck (extended cab),
truck (crew cab), wagon, and van.

• Country: The manufacturing country of the automobile.
The 7 possible countries are: England, Germany, Italy,
Japan, South Korea, Sweden, and USA.

• Highway MPG: The typical miles per gallon of the car
when driven on highways. If a class contains cars with
multiple years, it is annotated with the highway MPG of
the oldest car in the group.

• City MPG: The typical miles per gallon of the car when
driven on non-highway streets.

• Price: the price of the car in 2012.

This metadata was acquired via Edmunds.com in August
2012, with some missing data (a handful of car prices) filled
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in by car experts afterward. In cases where a class consists of
multiple visually indistinguishable types of cars, it is annotated
with the metadata of the oldest car in the set.

Dataset Summary. Tab. S2 provides a summary of the annota-
tions collected for both product shot and Street View images,
which we split into training (50%), validation (10%), and test
(40%) sets for use in training our car detector and classifier.

2. Demographic Data

Income. Data for median household income was obtained from
the American Community Survey (ACS) (6), and was collected
between 2008-2012. We used census variable B19013_001E,
“Median household income in the past 12 months (in 2013
inflation-adjusted dollars)”.

Education. Education data was also obtained from the ACS (6).
Education levels are split into the following mutually exclusive
categories (census codes in parentheses):

• Less than high school graduate (B06009_002E)

• High school graduate (includes equivalency)
(B06009_003E)

• Some college or associate’s degree (B06009_004E)

• Bachelor’s degree (B06009_005E)

• Graduate or professional degree (B06009_006E)

Race. Racial demographic data was also obtained from the
ACS (6), and corresponds to census codes B02001_002E
(“White alone”), B02001_003E (“Black or African American
alone”), and B02001_005E (“Asian alone”).

Voting. Data for the 2008 U.S. presidential election was pro-
vided to us by the authors of (7) and consists of precinct-level
vote counts for Barack Obama and John McCain. For all of
our analyses, we ignore votes cast for any other person, i.e. the
count of total votes is determined solely by votes for Obama
and McCain. We visualize this raw data in Fig. S16.

Obama received greater than 50% of the votes in most of
the precincts in our dataset. This can partially be attributed
to the fact that he won the popular vote in the 2008 election.
Precincts in our dataset are also located in major cities which
favor candidates from the Democratic party. Interestingly,
Obama received an extremely high percentage (≥ 95%) of the
votes in many precincts in our dataset. A large portion of
these precincts have high concentrations of African Americans,
who overwhelmingly voted for him during the 2008 election.

3. Additional Details for Car Detection and Classifica-
tion

Isotonic Regression. Our car detection model outputs bound-
ing boxes and scores associated with each box. We use isotonic
regression to convert these scores to probabilities depicting
the likelihood of containing a car. Isotonic regression learns a
probability for each detection score subject to a monotonicity
constraint. Concretely, after sorting n validation detection
scores s1, . . . , sn such that si ≤ si+1, and with yi a binary
variable denoting whether detection i is correct (has Jaccard

similarity of at least 0.5 with a ground truth car bounding box),
isotonic regression solves the following optimization problem:

minimize
p1,...,pn

∑n

i=1 ‖yi − pi‖2
2

subject to pi ≤ pi+1, 1 ≤ i ≤ n− 1
[1]

Given a new detection score, a probability is estimated by
linear interpolation of the pi. We plot the learned mapping
from detection scores to probabilities in Fig. S7A.

Additional Design Considerations.

Car Detection. We made a number of additional design choices
while training and running this car detector in practice. First,
we only detected cars that are 50 pixels or greater in width
and height. The output of our detector is fed into the input of
our car classifier. Thus, detected cars need to have sufficient
resolution and detail to enable the classifier to differentiate
between 2,657 categories of automobiles. Similarly, we trained
our detector using cars with greater than 50 pixels width and
height. Our DPM is trained on a subset of 13,105 bounding
boxes, reducing training time from a week (projected) to 15
hours. Using this subset instead of all ground truth bounding
boxes results in negligible changes in accuracy.

Car Classification. One further challenge while classifying Street
View images is that our input consists of noisy detection
bounding boxes. This stands in contrast to what would oth-
erwise be the default for training a classifier – ground truth
bounding boxes that are tight around each car. To tackle this
challenge, we first measured the distribution of the intersection
over union (IOU) overlap between bounding boxes produced
by our car detector and ground truth boxes in the validation
data. Then, we randomly sampled the Street View image
region input into the CNN according to this IOU distribution.
This simulates detections as inputs to the CNN and ensures
that the classifier is trained with similar images to those we
encounter during testing.

4. Raw Correlations Between Car Attributes and Demo-
graphics

Fig. S2 shows the magnitude of weights learned by our model
for inferring various demographic attributes. That is, we sort
the coefficients of the regression model in descending order.
Each coefficient is uniquely associated with one of the 88
car features used in our model. We then plot the top 5 and
bottom 5 values. However, looking at the model weights may
not always be informative since some car features are highly
correlated (e.g. Lamborghini and car price). A linear model
distributes the magnitude of its coefficients among highly
correlated features. Thus, the weights of highly predictive
car features might still be small. Thus, to investigate the
relationship between various demographic variables and cars,
we list the raw correlations between all of our car features and
ground truth demographic data.

Income. Correlations between median household income
and each of our car attributes are given in Tab. S4. The
five car attributes that correlate most positively with median
household income are %Foreign (r=0.47), %Country: Japan
(r=0.45), Price (r=0.44), %Make: Lexus (0.44), and %Country:
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Germany (r=0.43). The five car attributes that correlate most
negatively with median household income are %Country: USA
(r=-0.47), %Year: 1995-1999 (r=-0.42), %Make: Buick (r=-
0.40), %Make: Oldsmobile (r=-0.40), and %Make: Dodge
(r=-0.38).

Education. We show correlations between each of our
car attributes and education levels in Tab. S5, Tab. S6, Tab. S7,
Tab. S8, and Tab. S9, and the five car attributes that correlate
most positively and most negatively with each race are given
in Tab. S10.

Race. Correlations between our car attributes and the
percentage of each race considered (White, Black, and Asian)
are given in Tab. S11, Tab. S12, and Tab. S13, respectively.
The five car attributes that correlate most positively and most
negatively with each race are given in Tab. S14.

Voting. We show correlations between %Obama and all
of our car-centric variables in Tab. S15, and plot our predic-
tions versus actual voting percentages in Fig. S18. The five car
attributes that correlate most positively with Obama’s per-
cent of votes are Body Type: Sedan (r=0.48), #Cars/Image
(r=0.37), MPG Highway (r=0.33), and MPG City (r=0.26).
The five car attributes that correlate most negatively are Body
Type: Crew Cab (r=-0.48), Body Type: Extended Cab (r=-
0.43), Body Type: Regular Cab (r=-0.30), Price (r=-0.28),
and Body Type: SUV (r=-0.22).

5. Cross Validated Performance with Randomly Split
Training Data

In the main text, we chose zip codes and precincts in counties
starting with “A”, “B” or “C” to train our model and evaluated
the model on the rest of our data. This was done to show
that we could train a model that can infer demographics with
reasonable accuracy, using very little data (approximately 10%
of our data). We also wanted to ensure that zip codes in the
same city were not used in training and testing.

Below, we present demographic inference results using a
different training methodology. We randomly partitioned our
zip codes and precincts into five sets, iteratively training a
model on four of the parts and predicting on the held out set.
As before, we normalize the car features to have zero mean
and unit standard deviation (parameters determined on the
training set of four parts). We furthermore clip predictions to
be within the range of the current training data, preventing
predictions from becoming too extreme. In all experiments
at the zip code level we restricted the zip codes used to be
ones with a population of at least 5,000 and at least 500
detected cars, which reduces the number of zip codes under
consideration from 3,068 to 2,430, mostly as a result of the
restriction on the number of detected cars.

Fig. S17 and Fig. S18 show scatter plots and Pearson cor-
relation coefficients for actual vs. predicted values of income,
education, race and voting patterns respectively. The scatter
plots show results at the highest level of spatial granularity
our analysis is performed in (precinct level for voting patterns
and zip code level for everything else). (The r-values for the
correlations were: median household income, r = 0.79; per-
centage of Asians, r = 0.79; percentage of Blacks, r = 0.81;

percentage of Whites, r = 0.76; percentage of people with a
graduate degree, r = 0.78; percentage of people with a bache-
lor’s degree, r = 0.76, percentage of people with some college
degree, r = 0.67, percentage of people with a high school
degree, r = 0.76; percentage of people with less than a high
school degree, r = 0.73; percentage of people who voted for
Barack Obama during the 2008 presidential election, r = 0.67.

6. City Car Attributes

Using our car detections, we can answer specific questions
about cars and cities. For example, we can ask what the
average age of a car on the road is, what the average car
price is (in the US as a whole and in each city), which city
has the most expensive cars on average (New York, NY), or
the highest percentage of foreign cars (San Francisco, CA -
60.02%), etc...We show maps comparing a subset of these at-
tributes across our 200 cities (average car price, the percentage
of foreign cars, BMWs, Chevrolets, Toyota Prius, and Ford
F-150s) in Fig. S19.

7. Additional ACS Variables

In this section, we report results for an additional 28 ACS
variables that were inferred using our Google Street View based
methodology. While the ACS has many variables, we obtained
a subset of 28 attributes that are indicators of income, race,
education and occupation levels as well as other characteristics
of neighborhoods such as owner occupancy of housing units.
Fig. S20 shows scatter plots of actual vs. predicted values
(cross validated performance with randomly split training
data).

Some variables can be inferred with high accuracy using our
methodology (e.g the Pearson correlation coefficient between
actual vs. predicted values for median household income for
units with a mortgage is r = 0.80). Variables such as the
age of one’s children can be inferred with moderate accuracy
(r = 0.54). On the other hand the Farming variable cannot
be inferred from cars at all r = 0.0 (p � 1e − 7 for all
variables). This is in part due to the fact that our car features
reflect percentages and therefore are most suited to infer the
percentage of something as opposed to the actual value. E.g.,
we have setup our methodology to infer the percentage of
inhabitants in a neighborhood with a bachelor’s degree as
opposed to the total number of citizens who have obtained a
bachelor’s degree. Note that we also do not include all vehicles
in our dataset (e.g. we omit tracktors and large trucks).
Including these might improve our accuracy in estimating
farming related ACS variables. It is also important to note
that we have not refined our methodology to be able to infer
these additional variables and have simply applied our current
methodology to them and reported our results. However, some
of these results indicate that not all ACS variables can be
inferred from analyzing cars in Google Street View images.
Thus, our methodology is only applicable to those variables
that are most strongly correlated with car preferences.

This additional data was also obtained using the ACS
API (6). We list the variables of interest below (census codes
in parentheses):

• Median Age by Sex-Total (B01002_001E)

• Median Age by Sex-Male (B01002_002E)
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• Median Age by Sex-Female (B01002_003E)

• Median Household Income by Age of Householder-Total
(B19049_001E)

• Housing Units-Total (B25001_001E)

• Occupancy Status-Total (B25002_001E)

• Occupancy Status-Occupied (B25002_002E)

• Occupancy Status-Vacant (B25002_003E)

• Median Number of Rooms-Median number of rooms
(B25018_001E)

• TENURE BY UNITS IN STRUCTURE-Owner-occupied
housing units (B25032_002E)

• TENURE BY UNITS IN STRUCTURE-Renter-occupied
housing units (B25032_013E)

• Median household income for units with a mortgage
(B25099_002E)

• Median household income for units without a mortgage
(B25099_003E)

• Bedrooms-Total (B25041_001E)

• Total Population (B01003_001E)

• Total Race (B02001_001E)

• Total Education (B06009_001E)

• American Indian and Alaska Native alone (B02001_004E)

• aggregate number of vehicles for travel (B08015_001E)

• age of own children (B05009_001E)

• own children under 6 years (B05009_002E)

• 6-17 years (B05009_020E)

• management (B24021_002E)

• service (B24021_018E)

• farming (B24021_030E)

8. Alternate Sources of Data

Department of Motor Vehicles Registration Data. Cars in
Google Street View images capture the types of automobiles
that are parked, or pass through a neighborhood in a given
snapshot of time. If it is near a freeway or a parking lot, a
high density of cars will be detected. In our work, we use
this information to infer the demographic characteristics of
neighborhoods. How do our detected automobiles compare to
those from DMV data? We do not expect them to be exactly
the same because cars in Google Street View do not always
belong to inhabitants of the neighborhood they are captured
in.

We compared the distribution of cars we detect in Street
View images with the distribution in Boston, Worcester and
Springfield, MA (the three Massachusetts cities in our dataset),

released by the Massachusetts DMV, the only state to release
extensive vehicle registration data (8). We measured the Pear-
son correlation coefficient between each detected and registered
make’s distribution across zip codes (Fig. S21 (A)). Twenty
five of the top thirty makes have a Pearson’s r correlation
of r>0.5. Conversely, classifying according to the 2011 na-
tional auto sales distribution (9) results in correlation r=0
with DMV data. Beyond Massachusetts, we measure the cor-
relation between our detected car make distribution and the
2011 national distribution of car makes as r=0.97. Fig. S21 (B)
plots the DMV values vs. our predicted percentages for the
distribution of Hondas in each zip code. Fig. S22 —Fig. S23
show the latter plot for all makes instead of only Hondas.

Vehicle data for Massachusetts is available from the Mas-
sachusetts Vehicle Census (8) and contains anonymized zip
code and model information for all vehicles registered in Mas-
sachusetts between 2008 and 2011. Since our comparison with
this data was done at the make level, aligning their list of
car classes and ours entailed only aligning the list of makes,
which was done by hand. We performed our experiments on
the intersection of detected and registered makes resulting in
a total of 45 makes.

To calculate the distribution of car makes in each zip code,
we compute the expected number of each of the 2,657 car
classes across the zip code, then simply use the make metadata
associated with each car class to calculate the expected number
of cars for each make within the zip code. Since the expected
number of instances of a particular car across a zip code is the
sum of the expected number of instances of the car across all
images within that zip code, the problem reduces to calculating
this expectation for a single image.

With I an image and c one of the 2,657 classes, we decom-
pose the expectation for a single image as

E[#class c|I] =
∑

bbox b

P (car|b, I)P (class c|car, b, I) [2]

where we are summing over all bounding boxes b for generic
cars detected by our model. We model P (car|b, I) using iso-
tonic regression (described in Methods), and P (class c|car, b, I)
corresponds to the conditional probabilities output by the soft-
max layer of our CNN classifier.

To obtain the percentage of each make, we aggregate these
category-level expectations by car make and compute percent-
ages using the make-level expectations.

The Pearson coefficient for each make is calculated by taking
the percentage of that make in one zip code as a single data
point. We chose zip codes with greater than 5,000 inhabitants
and 500 detected cars in the three Massachusetts cities in our
dataset (Boston, Springfield, Worcester), resulting in a total of
37 zip codes. For all experiments, we used registration records
that were valid during the second quarter of 2010. As outlined
by (8), registration datasets are most complete at that point.

Fig. S24A shows the Pearson correlation coefficient between
the distribution of registered and detected cars across zip codes
for all makes that are in the intersection of our dataset and
Massachusetts registration data: in contrast to Fig. S21 (A),
this shows all makes instead of the top 30. In addition to
comparing the distribution of each registered and detected
make across zip codes, we performed two additional experi-
ments. First, we compared the distribution of all detected
and registered makes per zip code, computing the Pearson

6 of 58 Timnit Gebru, Jonathan Krause, Yilun Wang, Duyun Chen, Jia Deng, Erez Lieberman Aiden, Li Fei-Fei



correlation coefficient for each zip code (Fig. S24B). All zip
codes have correlation greater than 0.8. In contrast, classifying
according to the national distribution only results in correla-
tions greater than 0.45 for all zip codes. Next, we compared
the total distribution of registered and detected cars in all 37
zip codes (Fig. S25) and measured a correlation coefficient of
0.94. Prediction using the national sales distribution instead
of our approach only has correlation 0.82.

Since we have very few zip codes with DMV data, we
did not train a model using DMV data to infer demographics.
However, our experiments show that there is significant overlap
between the information we collect and DMV data. But we
do not capture exactly the same information. The question
we ask is how the look of a neighborhood, as captured by
the cars that one sees in it, is related to demographics. If
the neighborhood is near a freeway, we would detect a lot of
cars. If the neighborhood is one with many cars parked on the
street, our method would take this into account. On the other
hand, performing this analysis with DMV data associates the
cars owned by residents of a particular neighborhood with the
demographic makeup of that neighborhood. Our work also
presents a pipeline to measure various attributes using publicly
available visual data. If one were to, for example, study the
relationship between tree species in a neighborhood and the
health of its inhabitants, they can use our methodology (data
collection, detection, classification etc...) to perform their
study.

Satellite Night Lights. Many works, e.g. (10–13), have studied
the relationship between nighttime lights observed through
satellite imagery and total population, population density,
GDP and a few other variables such as the number and density
of establishments. While most of these works have focused on
using night lights to predict population density and income
levels in developing countries with very little census data, (11)
investigates the use of this technique to estimate income in
nations such as Sweden with near uniform distribution of
electricity among its population.

What (10) found was that in countries such as Sweden where
living standards are much more uniform than the developing
world, the correlation between night time luminosity and total
wage values was not as high. Using a sophisticated statistical
model (rather than simple linear regression used in our paper),
the correlation reported by (10) between actual and predicted
total wages was 0.52.

While, in the developing world, the presence/absence of
lights in one’s household is a strong indicator of income levels,
this is not necessarily the case in countries like the United
States where almost all citizens have access to electricity.
As (13) notes, in the United States where living standards
are much more uniform than the developing world, the higher
concentration of lights in coastal areas near the oceans and
the Great Lakes reflects the higher population densities there
as opposed to higher income.

To our knowledge, there is no prior work attempting to
infer race, voting affiliations of education levels purely using
night time data. This is because even the correlation between
economic output and night time data has been found to be
relatively weak in the developed world (10, 11). While certain
races and political affiliations have shown to have historical
preferences for different car brands (14–17), the relationship
between night lights and these variables in the United States

is unclear. However, as discussed in the main text, our paper
presents a proof of concept that can be expanded upon. Our
future work plans to incorporate all other publicly available
data (including night time lights, CNN features, other de-
tected objects such as trees and pedestrians) into our model
to improve its accuracy.

9. Related Work Using Google Street View

A number of prior works have asked similar questions to our
work about cities. Salesses et al. (18) collected a dataset of
approximately 1M Google Street View images labeled with
annotators’ perception of the safety, uniqueness and wealth of
the locations portrayed by each image. Subsequent works (19–
21) infer these labels using global image features (20) and
CNN features (19, 21). Dubey et al. (21) performs this anal-
ysis at a large scale. In these works, a location’s perceived
wealth/safety/location is given a number between 0 and 10
where 10 corresponds to the wealthiest/safest/most unique
location.

While the goal of all of these works is to predict people’s
perception of a location’s wealth, uniqueness and safety using
images, our goal is different. Our goal is to predict the actual
median household income, racial makeup, education level, vot-
ing patterns of a certain location given its street view images.
Thus, instead of inferring the perception of a particular neigh-
borhood’s safety, uniqueness and wealth given its photos, we
are interested in predicting its true characteristics as recorded
by government agencies such as the ACS and voter polling
stations.

Arietta et al (22) uses features from convolutional neural
networks and other global image features (HOG and GIST) to
predict housing prices and violent crime rates in San Francisco,
Chicago, Boston, Oakland, Seattle and Philadelphia. While
they obtain high correlations between predicted and ground
truth values when locations in the same city are used for
training and testing purposes, the accuracy is low while using
different cities for training and testing. For example, while high
Pearson r values are achieved between actual and predicted
housing prices when the same city is used for training and
testing (e.g. 0.815 for Boston), the Pearson r for training and
testing across different cities is much lower (e.g. 0.444 while
training on Boston and testing on Seattle). Thus, these visual
attributes do not necessarily generalize across cities.

10. Baselines

In this section, we compare our approach to a number of
baselines that infer demographics from various global image
features and course grained census data.

Projecting Course Census Data to Fine Geographic Locations. Here,
we investigate the predictive power of features derived from
ACS data at course spatial granularity, to infer demographics
at finer spatial granularity. Specifically, we train a regression
model to infer demographics at the zip code level, using ACS
data at the city level. In order to have a baseline that performs
better than simply assigning all zip codes in a city to the
demographic data of the city, one must assume that some
demographic data is available at the zip code level. In our
case, we assume access to the total population of each zip code.
Thus, our model is trained using 9 city level and 1 zip code
level ACS data. That is, each zip code is now represented by
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a 10 dimensional vector consisting of 9 demographic variables
at the city level and the number of inhabitants in the zip code.
We then use the exact same procedure as our methodology
described in the main text to train a model inferring zip code
level demographic variables. The only difference is that we
use these 10 ACS variables as our features instead of an 88
dimensional vector representing each zip code’s car related
attributes. This baseline was performed using all of the zip
codes in our data.

Figs. S28— S29 plots our results (actual vs inferred values).
The Pearson r values and p values for all variables are listed on
the plots. They are r = 0.05, p = 0.007 for median household
income; r = 0.174, p � 1e − 7 for the percentage of people
with less than a high school education; r = 0.1p � 1e − 7
for the percentage of people with a highschool education;
r = 0.08, p = 7e − 5 for the percentage of people with some
college education; r = 0.12, p� 1e− 7 for the percentage of
people with a bachelor’s degree; r = 0.19, p� 1e− 7 for the
percentage of people with a graduate degree; r = 0.09, p = 0.1
for the percentage of Whites; r = 0.04, p = 0.04 for the
percentage of Blacks; r = 0.08, p = 9.8e− 5 for the percentage
of Asians. Given these results, coarse level census values seem
to have very little predictive power for inferring education
levels, and no ability to infer income or race at a more granular
level.

Pretrained Convolutional Neural Network Features. Here, we infer
demographics with the same methodology as before but con-
struct our model using pretrained CNN features instead of car
attributes detected in Google Street View images. That is,
our zip code level features consist of fc6 activations from an
AlexNet (23) CNN instead of the 88 car attributes we used
before. As first shown by (24) in 2014, features from a CNN
pretrained on ImageNet have been proven to be much more
discriminative than handcrafted ones such as SIFT, GIST or
HOG (24).

We represent each zip code as a 4096 dimensional vector
which is the average of fc6 activations obtained from all images
in a particular zip code. That is, we input each Google Street
View image in a particular zip code to a CNN pretrained on
ImageNet. We then take the 4096 fc6 activations from each
image and average those in the same zip code to obtain a
single feature representation for each geographic location of
interest. We subsequently use the same methodology (ridge
regression) to train a model inferring race, education and
income levels obtained from the ACS. We do this analysis
on all images from states that start with “A” in our data
(i.e., cities in Alabama, Alaska, Arizona, Arkansas). This
consists of the cities: Birmingham (Alabama), Montgomery
(Alabama), Anchorage (Alaska), Fairbankds (Alaska), Phoenix
(Arizona), Tucson (Arizona), Little Rock (Arkansas) and Fort
Smith (Arkansas). This comprises of 5,144,334 images which
is slightly higher than 10% of the 50 million images in our data.
We performed this analysis on a subset of our dataset due
to the large amount of time it takes to obtain CNN features
using our GPU cluster.

We compare our methodology to this baseline while using
a randomly selected subset of 10, 20, 30, 50 and 80 percent
of training data, and testing on the rest of the data. This
allows us to investigate how the two approaches compare as we
have access to little or plentiful training data. Figs. S26— S27
show how the two methods compare with increasing amounts

of training data. We plot the Pearson r between actual and
inferred values using car based and pretrained CNN based
features. The CNN based features have no predictive power
with little training data while the car based features have some
(albeit little) predictive power even while using 10% of the data
for training amounting to just 12 zip codes. However, CNN
based features approach the performance of our car based
method when large amounts of training data (i.e. over 50%)
are available.

We hypothesize that this is due to the low generalizability
of Google Street View CNN features to new locations (as
mentioned in the related works section above). While using
small amounts of training data, no CNN features from locations
in visually similar zip codes or cities are available. However, by
the time we use more than 50% of our data for training, there
are images from nearby zip codes in the training set, which
ensures high visual similarity between images in the train and
test set. These experiments show that car based features are
more predictive and generalizable when little training data is
available (such as in our case when we would like to minimize
the amount of ACS ground truth data required to train a good
model). However, it is clear that CNN features have predictive
power and would probably enhance our model’s performance
if our method is augmented to include them. Nevertheless,
our simple model trained using car features is much more
interpretable than that trained using 4096 dimensional fc6
activations. One can simply look at car attributes where our
model places high weights, learn the relationship between
various demographic variables and car attributes and gain
further insight into American culture.

11. Timelapse Experiments–Inferring Demographics
Across Time

Our work so far has used ground truth data from one geo-
graphic location to infer demographics in another location
at the same time point. In this section, we perform prelim-
inary experiments to test the feasibility of inferring future
demographic trends in a particular neighborhood given its
current and past ACS data. To perform our experiments,
we use the recently introduced Google Street View timelapse
tool which shows time-lapse images of the same location over
time. Fig. S30 shows the dramatic economic development of a
particular address in Brooklyn, New York over time.

We retrieved Google Street View timelapse images for New
York city using the same methodology to gather Street View
images discussed before. Figs. S31— S32 show maps of the
coverage at the district level for each year. Fig. S33 plots
the number of images per year for each district. As these
maps and plots show, the number of images is nonuniform
across years and districts. For example, there is no Statin
Island coverage for 2014. This nonuniformity in sampling can
cause errors in our estimations. Nevertheless, we conducted
preliminary experiments to asses the feasibility of performing
future research in this area.

Once we gathered the images across time, we detected
and classified all the cars in these images following the same
procedure as our retrieved Street View images. For each year,
we represented each district as a collection of the car features
in that district using the methodology described in the main
text.

We retrieved 2011, 2012, 2013 and 2014 yearly ACS data for
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each of the 13 congressional districts in New York city. Yearly
ACS data is only available at the district and county levels
and for years after 2011. Figs. S34— S35 plots the data of
interest (race, education, income) across time for each district.
There is very little change from year to year.

We used past ACS data and images to train a model predict-
ing future ACS data. Specifically, we trained a ridge regression
model using 2013 ACS data as ground truth and tested the
model on timelapse images from 2014. Figs. S36— S38 plots
our results. We achieve a very high correlation between ground
truth results and our predictions (e.g. Pearson r =0.93 for
the percentage of Asians. All the Pearson coefficients and p
values are listed on the plots). However, since we only have
data at the district level and the change from year to year is
very small, a baseline assuming constant ACS data (i.e. no
change from the prior year) achieves even higher Pearson r
(r=0.99 for the percentage of Asians). We could not perform
this experiment at the zip code or precinct level for lack of
data. The ACS does not have yearly data at the zip code level.
We hypothesize that more demographic changes occur at the
zip code level from year to year. Then, district level ACS data
could be used to calibrate car preferences over time and infer
ACS data at the zip code level.

In our second experiment, we wanted to specifically predict
the change in ACS data. To do this, we trained a ridge
regression model using the difference in ACS data between
consecutive years as ground truth. To encode the change in
detected cars, we subtracted the car features for consecutive
years in each district. These features were used to train the
regression model. We show some preliminary results in Fig. S39
showing the change in the number of high school educated
people in NYC (one of the variables that showed some change
over the years). While the potential to detect demographic
trends is present, our ability to detect small changes at the
district level is not currently strong. And more research and
experimentation is necessary to have conclusive results.

To examine the stability of correlations between car types
and neighborhood inhabitants, we examine the correlation
between various car attributes and ACS data over time. In
Fig. S40, we plot the correlation between median household
income and various car attributes over time, as well as the
associated p values. We see that higher level attributes (such
as adjusted car price and age) consistently have a statistically
significant positive/negative correlations across time. Some
makes (e.g. Lamborghinis) also have a consistently statisti-
cally significant high correlation with income. E.g. r > 0.65
for 2012, 2013, 2014). On the other hand, Porsches have a
statistically significantly high positive correlation with income
in 2013 and 2014 (r > 0.65) but that correlation is 0.2 for
2012 with a p value of 0.5. The latter is not a statistically
significant correlation. This discrepancy is most probably due
to errors introduced by the non uniform sampling of images
across years and neighborhoods. However, it is still important
to note that car preferences in a particular location could
change over time. To study this effect, these analyses should
be repeated using images from GPS points that are evenly
sampled across New York to minimize errors. Nevertheless,
these preliminary results show that socioeconomic trends could
potentially be inferred using images to capture the change in
car types across neighborhoods.

12. Sources of Error

One source of error lies in the quality of the Street View images.
Images from Street View may have image stitching artifacts,
have street names in the images, and cars in Street View
images might not be entirely visible, either due to occlusions
with other objects or simply being cut off by the edge of the
image. These factors make car detection and classification
in Street View images more difficult. However, images used
in our performance analysis are also subject to these issues,
and thus our demonstrated performance holds despite these
challenges.

Another source of error consists of biases in sampling, con-
sisting of either sampling at certain roads or regions preferen-
tially (due to having incomplete or out of date information
about roads in cities) or sampling images taken at different
dates. Although being able to properly account for these types
of errors would undoubtedly improve and strengthen the anal-
ysis, these factors do not diminish or weaken the results we
already have, and can be considered a source of noise in the
data. For example, addressing these limitations might result
in stronger correlations and lower p-values. But unless these
are systematic errors across the entire United States, they do
not affect the validity of the results presented in this work.

Errors in detection and classification of cars can also con-
tribute to inacurraccies in the final results. Our car detection
system does not have perfect precision and recall. Similarly,
the accuracy with which our car classifies all 2,657 classes is
not the same. However, we aggregate these classes by make,
body type and other metadata before performing demographic
inference. As shown in Fig. S9, the errors we make at levels
such as the price and body type are reasonable. I.e., we rarely
mistake a very expensive car for a very cheap one, or vice versa.
This alleviates the level of systematic error in our demographic
predictions.

The data used for demographic, crime, and voting analysis
were not collected at the same point in time as images taken
in Street View, and thus any drift in those sources over time is
also a potential source of error. For example, 2008 presidential
election data was used in our analyses, but the majority of
Street View images were taken after 2008. This is due to the
fact that precinct level election data for 2012 was not available
for all of our 200 cities. While this is an unrecoverable source
of error, it is primarily a problem when such statistics change
rapidly over time, and when demographic projections are
performed across time. I.e., when inferences for future years
are performed based on ground truth data for current and
prior years. Thus, our preliminary timelapse experiments do
not use voting data and make inferences based on images and
ACS data from the appropriate years.
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a b c

Confusion matrixes show the accuracy with which we classify various car attributes. 
Fig. S1. Confusion matrices show the accuracy with which we classify various car attributes such as type of vehicle in a, whether or not it is domestic in b, and its price in c.
The entry in row i and column j indicates the percentage of times ground truth attribute j was classified as attribute i. Thus, the values for all rows in a single column should
add up to 1.

Fig. S2. Bar plots showing the top 10 car features with high positive weight in our race estimation model.
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Fig. S3. Scatter plots of ground truth income and race values vs our estimations. Also shown on each plot is the line y=x which corresponds to a perfect predictor.
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Fig. S4. Scatter plots of ground truth data vs our estimations of educational attainment. Also shown on each plot is the line y=x which corresponds to a perfect predictor.
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Fig. S5. Scatter plots of ground truth data showing the percentage of people with a graduate school degree vs our estimations, and the percentage of people who voted for
Barack Obama in the 2008 presidential election vs our estimations. Also shown on each plot is the line y=x which corresponds to a perfect predictor.
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Figure S8: (A) Bounding box position vs log(area). Each point corresponds to a single bounding
box in our training set of Street View images, and the color corresponds to the log of the number
of pixels in the bounding box. (B) Bounding box position vs frequency. The color of each pixel
indicates the number of bounding boxes in the training set which overlap that pixel.
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Figure S8: (A) Bounding box position vs log(area). Each point corresponds to a single bounding
box in our training set of Street View images, and the color corresponds to the log of the number
of pixels in the bounding box. (B) Bounding box position vs frequency. The color of each pixel
indicates the number of bounding boxes in the training set which overlap that pixel.
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Fig. S6. (A) Histogram of the number of cars annotated in the Street View images, represented by the number of annotated bounding boxes in each image. Images included in
these numbers are those images annotated as containing more than zero and less than 11 cars. (B) Bounding box position vs log(area). Each point corresponds to a single
bounding box in our training set of Street View images, and the color corresponds to the log of the number of pixels in the bounding box. (C) Bounding box position vs frequency.
The color of each pixel indicates the number of bounding boxes in the training set which overlap with that pixel.
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Fig. S7. A. The transformation from detection scores to the probability of the detection being correct (i.e. probability of correctly detecting a car), learned with isotonic regression
on the validation set. B. Precision/recall curve for our final detection model on the test set.
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Fig. S8. Example detections with our model on our testing set. Shown in the box around each detection is our estimated probability of the detection having intersection over
union greater than 0.5, i.e. counted as correct during detection evaluation.
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A B

C D

Fig. S9. Confusion matricies of predictions. The entry in row i and column j indicates how many times ground truth attribute i was classified as attribute j. The attributes are A.
the make of the car, B. the manufacturing country of the car, C. the model of the car, and D. the body type of the car.
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Fig. S10. The Amazon Mechanical Turk (AMT) user interface for grouping visually indistinguishable pairs of classes. The user is asked whether or not the two cars are visually
distinct with an option to view more detailed instructions.
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Group 1999 Group 3749

Fig. S11. Two examples of classes and the different types of visually indistinguishable cars in each class. Each column is a unique class. The first column shows cars
assembled into group 1999 whereas the second column shows those in group 3749.

Bad:
Closeup Good

Bad:
Interior

Fig. S12. Left, Middle: Examples of product shot images unsuitable for our dataset, as they are either extremely close up (left) or are of the interior of the car (middle). In order
to be suitable for recognition, an image must be of the exterior of the car and the car must be entirely visible (right).
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Fig. S13. Screenshot of the user interface for labeling images containing a car viewed from the exterior, deployed on Amazon Mechanical Turk. Below the instructions are a set
of images, and the user is tasked with clicking on the images containing a single prominent vehicle, viewed from the outside. Images the user clicks are moved to the panel on
the right side of the screen, and clicks can be undone by clicking on the image in the right panel.

Raw Unwarped

Fig. S14. An example of the unwarping that needs to be done on images retrieved from Street View. Left: an image from Street View as initially scraped. The image appears
warped (e.g. straight lines in the real world are not straight in the image) due to the equirectangular projection used to store spherical panoramas. Right: the result of undoing
this projection, which we do before using the images any further.

Timnit Gebru, Jonathan Krause, Yilun Wang, Duyun Chen, Jia Deng, Erez Lieberman Aiden, Li Fei-Fei 19 of 58



A B

C

Fig. S15. Screenshots of the user interface for hierarchically annotating Street View images with car categories. A. The expert is first asked to identify the make. B. The next
step in the task is to identify the body type of the car which is called submodel in the task. C. Once the body type is identified we provide a list of classes for the selected make
and body type. Example images of each class are also shown to aid the user in identification.
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Fig. S16. Histogram of the fraction of votes cast for Barack Obama vs. John McCain in the 2008 presidential election for the precincts in our dataset.
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Fig. S17. Scatter plots of cross validated actual versus predicted education and median household income levels. Also shown on each plot is the line y = x, which corresponds
to a perfect predictor.
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Fig. S18. Scatter plots of crossvalidated actual versus predicted distributions of race. Also shown on each plot is the line y = x, which corresponds to a perfect predictor. The
last scatter plot shows cross validated actual vs predicted voting results.
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(a) Average car price (b) Percentage of foreign cars

(c) Percentage of BMWs (d) Percentage of Chevrolets

(e) Percentage of Toyota Prius (f) Percentage of Ford F-150

Fig. S19. Maps of a variety of car attributes as measured across the cities in our dataset. Each point corresponds to one city. Not shown: Alaska and Hawaii.
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Fig. S20. Our methodology applied to predicting additional ACS attributes not discussed in the main text. Note: this is an application of our methodology to infer variables with
no refinement. Best viewed after zooming in.
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Fig. S21. A. Correlation between our detected makes and Massachusetts DMV data for 30 makes. B. The percentage of registered Hondas vs. Those we detect.

Fig. S22. The percentage of registered makes in each zip code (according to DMV data) vs. those we detect for each make.
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Fig. S23. The percentage of registered makes in each zip code (according to DMV data) vs. those we detect for each make (continued from prior page).
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Fig. S24. A. The correlation between the distribution of detected and registered car makes across zip codes in the three cities in Massachusetts, Boston, Springfield, and
Worcester. We show results for all 45 makes in the intersection of our and DMV data. B. The correlation between the distribution of detected and registered car makes in each
zip code for the three cities in Massachusetts (Boston, Springfield, Worcester). All zip codes have correlation greater than 0.8.
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B

Fig. S25. (A) The Distribution of registered makes in Boston, Springfield, and Worcester Massachusetts. (B) The distribution of detected makes in Boston, Springfield, and
Worcester Massachusetts.
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Fig. S26. Comparisons of our methodology with a baseline using features from a convolutional neural network pretrained on ImageNet. This experiment was carried out using
10% of our data (approximately half a million images). The x axis shows the percentage of training data and the y axis shows the Pearson correlation coefficient between
actual and predicted values.
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Fig. S27. Comparisons of our methodology with a baseline using features from a convolutional neural network pretrained on ImageNet. This experiment was carried out using
10% of our data (approximately half a million images). The x axis shows the percentage of training data and the y axis shows the Pearson correlation coefficient between
actual and predicted values (continued from prior page).
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(a) Median Household Income ($)
(b) Percentage of People with Less than a High school Education (Ratios between 0
and 1)

(c) Percentage of People with a High school Education (Ratios between 0 and 1) (d) Percentage of People with Some College Education (Ratios between 0 and 1)

(e) Percentage of People with a Bachelors Degree (Ratios between 0 and 1) (f) Percentage of People with a Graduate Degree (Ratios between 0 and 1)

Fig. S28. Zip code level income, race and education variables from the ACS inferred using city level data for the same variable and population data for each zip code.
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(a) Percentage of Whites (Ratios between 0 and 1) (b) Percentage of Blacks (Ratios between 0 and 1)

(c) Percentage of Asians (Ratios between 0 and 1)

Fig. S29. Zip code level income, race and education variables from the ACS inferred using city level data for the same variable and population data for each zip code.
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Google Time Lapse

New York City, New York 

2007 2014

Fig. S30. Google Street View Timelapse Images of a particular Neighborhood in Brooklyn New York. The economic development of this neighborhood is apparent from its
timelapse images in 2007 and 2014 depicting its transformation.
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(a) 2007 (b) 2008

(c) 2009 (d) 2010

Fig. S31. Maps showing a random sample of GPS points where Google Street View timelapse images were retrieved for New York city between 2007 and 2014.
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(a) 2011 (b) 2012

(c) 2013 (d) 2014

Fig. S32. Maps showing a random sample of GPS points where Google Street View timelapse images were retrieved for New York city between 2007 and 2014.
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Fig. S33. Bar plots depicting the number of Google Street View timelapse images retrieved for each congressional district in New York city.
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Fig. S34. Plots showing the change in various ACS socioeconomic variables from 2011—2014 for each of the 13 congressional districts in New York city. There is very little
change at the district level.
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Fig. S35. Plots showing the change in various ACS socioeconomic variables from 2011—2014 for each of the 13 congressional districts in New York city. There is very little
change at the district level (continued from prior page).
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Fig. S36. Results for inferring 2014 demographic variables in New York City’s congressional districts using 2013 ACS data for New York city and Google Street View timelapse
images for 2014. Left column shows the results applying our methodology. Right column shows a baseline assuming now change in demographic variables. Assuming no
change gives better results because we are not specifically training a model to predict changes and there is very little change in NYC ACS data from 2013 to 2014 at the district
level.
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Fig. S37. (Continued from Prior Page) Results for inferring 2014 demographic variables in New York City’s congressional districts using 2013 ACS data for New York city and
Google Street View timelapse images for 2014. Left column shows the results applying our methodology. Right column shows a baseline assuming now change in demographic
variables. Assuming no change gives better results because we are not specifically training a model to predict changes and there is very little change in NYC ACS data from
2013 to 2014 at the district level.
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Fig. S38. (Continued from Prior Page) Results for inferring 2014 demographic variables in New York City’s congressional districts using 2013 ACS data for New York city and
Google Street View timelapse images for 2014. Left column shows the results applying our methodology. Right column shows a baseline assuming now change in demographic
variables. Assuming no change gives better results because we are not specifically training a model to predict changes and there is very little change in NYC ACS data from
2013 to 2014 at the district level.
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Fig. S39. The change in the percentage of people with less than a high school education in each of the 13 New York city congressional districts between 2013 and 2014. Left is
the actual ACS Value and Right is our Prediction. Red signifies a decrease in percentage and blue an increase.
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Fig. S40. The Pearson correlation coefficient between various car attributes detected using our method and median household income across time. The p values are also
listed next to each point. This tests the stability of the correlations across time. Note that many errors are most probably introduced due to the nonuniform sampling of GPS
points across time. Note: zoom in to see a detailed view of each plot.
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City # Im. City # Im. City # Im. City # Im.

Birmingham, AL 484,818 Santa Ana, CA 90,030 Portland, ME 86,874 Salem, OR 102,174
Huntsville, AL 100,410 Santa Clarita, CA 83,298 Baltimore, MD 570,360 Philadelphia, PA 244,194
Mobile, AL 45,114 Santa Rosa, CA 243,324 Frederick, MD 182,388 Pittsburgh, PA 682,728
Montgomery, AL 45,084 Stockton, CA 343,662 Boston, MA 195,864 Providence, RI 130,104
Anchorage, AK 59,484 Sunnyvale, CA 66,318 Springfield, MA 116,928 Warwick, RI 172,092
Fairbanks, AK 42,384 Torrance, CA 136,260 Worcester, MA 197,424 Charleston, SC 56,604
Chandler, AZ 309,414 Aurora, CO 143,508 Detroit, MI 287,736 Columbia, SC 334,914
Gilbert, AZ 175,242 Colorado Springs, CO 492,222 Grand Rapids, MI 202,266 Rapid City, SD 30,954
Glendale, AZ 160,146 Denver, CO 306,990 Minneapolis, MN 654,270 Sioux Falls, SD 74,640
Mesa, AZ 283,620 Fort Collins, CO 307,056 Saint Paul, MN 164,034 Chattanooga, TN 284,214
Peoria, AZ 135,132 Bridgeport, CT 154,092 Gulfport, MS 14,898 Knoxville, TN 457,434
Phoenix, AZ 623,892 New Haven, CT 62,394 Jackson, MS 71,298 Memphis, TN 97,572
Scottsdale, AZ 138,120 Dover, DE 22,134 Kansas City, MO 577,830 Nashville, TN 554,118
Tempe, AZ 302,958 Wilmington, DE 80,754 Springfield, MO 395,502 Amarillo, TX 85,380
Tucson, AZ 634,986 Washington, DC 375,258 St. Louis, MO 426,942 Arlington, TX 509,406
Fort Smith, AR 205,512 Cape Coral, FL 309,102 Billings, MT 54,768 Austin, TX 211,530
Little Rock, AR 398,094 Fort Lauderdale, FL 279,300 Missoula, MT 157,254 Brownsville, TX 284,826
Anaheim, CA 133,098 Hialeah, FL 143,928 Lincoln, NE 444,306 Corpus Christi, TX 61,434
Bakersfield, CA 521,112 Jacksonville, FL 770,016 Omaha, NE 322,602 Dallas, TX 663,006
Chula Vista, CA 189,204 Miami, FL 310,692 Henderson, NV 259,416 El Paso, TX 205,500
Corona, CA 238,932 Orlando, FL 582,018 Las Vegas, NV 521,172 Fort Worth, TX 677,214
Elk Grove, CA 306,600 Pembroke Pines, FL 71,274 North Las Vegas, NV 197,394 Garland, TX 226,140
Escondido, CA 206,550 Port St. Lucie, FL 62,292 Reno, NV 104,328 Grand Prairie, TX 210,198
Fontana, CA 167,604 Saint Petersburg, FL 83,442 Manchester, NH 131,682 Houston, TX 337,830
Fremont, CA 232,608 Tallahassee, FL 419,220 Nashua, NH 139,890 Irving, TX 179,382
Fresno, CA 135,210 Tampa, FL 610,770 Jersey City, NJ 78,036 Laredo, TX 259,878
Garden Grove, CA 77,706 Atlanta, GA 315,336 Newark, NJ 129,948 Lubbock, TX 500,760
Glendale, CA 77,316 Augusta, GA 239,994 Albuquerque, NM 73,746 Pasadena, TX 29,700
Hayward, CA 207,744 Columbus, GA 54,246 Las Cruces, NM 82,098 Plano, TX 330,186
Huntington Beach, CA 101,574 Hilo, HI 14,406 Buffalo, NY 376,806 San Antonio, TX 1,034,358
Irvine, CA 183,474 Honolulu, HI 209,010 New York, NY 508,860 Salt Lake City, UT 272,190
Lancaster, CA 110,550 Boise, ID 42,438 Rochester, NY 391,458 West Valley City, UT 69,432
Long Beach, CA 265,806 Nampa, ID 231,318 Yonkers, NY 27,618 Burlington, VT 31,998
Los Angeles, CA 554,106 Aurora, IL 203,256 Charlotte, NC 111,510 Essex, VT 16,056
Modesto, CA 32,406 Chicago, IL 791,298 Durham, NC 359,592 Alexandria, VA 69,924
Moreno Valley, CA 180,516 Joliet, IL 118,116 Fayetteville, NC 292,296 Chesapeake, VA 38,568
Oakland, CA 326,208 Rockford, IL 372,156 Greensboro, NC 80,730 Newport News, VA 17,862
Oceanside, CA 129,384 Fort Wayne, IN 99,672 Raleigh, NC 409,776 Norfolk, VA 56,688
Ontario, CA 142,230 Indianapolis, IN 468,780 Winston-Salem, NC 457,314 Richmond, VA 504,138
Oxnard, CA 154,074 Cedar Rapids, IA 257,178 Bismarck, ND 156,912 Virginia Beach, VA 40,698
Palmdale, CA 164,064 Des Moines, IA 123,678 Fargo, ND 202,422 Seattle, WA 529,392
Pomona, CA 153,798 Kansas City, KS 577,830 Akron, OH 404,376 Spokane, WA 381,684
Rancho Cucamonga, CA 88,734 Overland Park, KS 9,252 Cincinnati, OH 511,842 Tacoma, WA 331,338
Riverside, CA 446,412 Wichita, KS 569,658 Cleveland, OH 416,142 Vancouver, WA 292,560
Sacramento, CA 525,756 Lexington, KY 345,516 Columbus, OH 568,776 Charleston, WV 38,628
Salinas, CA 175,530 Louisville, KY 419,544 Toledo, OH 51,444 Huntington, WV 42,144
San Bernardino, CA 124,002 Baton Rouge, LA 65,592 Oklahoma City, OK 687,234 Madison, WI 218,580
San Diego, CA 472,872 New Orleans, LA 456,042 Tulsa, OK 541,458 Milwaukee, WI 446,172
San Francisco, CA 215,298 Shreveport, LA 100,662 Eugene, OR 108,582 Casper, WY 43,542
San Jose, CA 274,848 Lewiston, ME 50,562 Portland, OR 548,334 Cheyenne, WY 211,668

Table S1. List of cities we collected Street View images for and the
number of Street View images we collected for each city.
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Attribute Training Validation Test

Street View Images 199,666 39,933 159,732
Product Shot Images 313,099 - -
Total Images 512,765 39,933 159,732

Street View Bounding Boxes 272,142 54,691 216,808
Product Shot Bounding Boxes 313,099 - -
Total Bounding Boxes 585,241 54,691 216,808

Street View Category Labels 34,753 6,921 27,888
Product Shot Category Labels 313,099 - -
Total Category Labels 347,852 6,921 27,888

Table S2. Dataset statistics for our training, validation, and test splits,
separated into Street View and product shot images.

Comp. Parts AP Time

1 0 52.3 2.27
1 4 63.2 3.48
1 8 64.2 4.84
3 0 62.9 6.48
3 4 66.7 12.20
3 8 68.4 16.47
5 0 64.8 10.25
5 4 67.3 16.33
5 8 68.7 22.07
6 0 65.2 10.48
8 0 66.0 11.17

Table S3. Average Precision (AP) on the Street View validation set for
various DPM configurations. Time is measured in seconds per image.
Comp. is the number of DPM components, and Parts indicates the
number of parts in the model.
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Variable Pearson’s r p-value Variable Pearson’s r p-value

Price 0.4435 1.16e-117 Make: Fiat 0.0747 0.000226
Cars/Image 0.0235 0.247 Make: Fisker 0.0751 0.000213
MPG Highway 0.1642 3.72e-16 Make: Ford -0.2697 9.17e-42
MPG City 0.2565 8.08e-38 Make: Geo -0.2051 1.73e-24
Hybrid 0.1169 7.58e-09 Make: GMC -0.1627 7.08e-16
Electric 0.1589 3.35e-15 Make: Honda 0.4234 2.67e-106
Foreign 0.4672 5.26e-132 Make: Hummer 0.0799 7.99e-05
Country: England 0.3126 3.15e-56 Make: Hyundai 0.1201 2.91e-09
Country: Germany 0.4335 6.3e-112 Make: Infiniti 0.2649 2.58e-40
Country: Italy 0.2167 3.18e-27 Make: Isuzu -0.1252 5.91e-10
Country: Japan 0.4471 1.01e-119 Make: Jaguar -0.0397 0.0504
Country: South Korea 0.0834 3.83e-05 Make: Jeep 0.0153 0.452
Country: Sweden 0.2553 1.8e-37 Make: Kia -0.0239 0.238
Country: USA -0.4672 5.26e-132 Make: Lamborghini 0.1999 2.56e-23
Body Type: Convertible 0.1484 1.95e-13 Make: Land Rover 0.3000 1e-51
Body Type: Coupe -0.2211 2.69e-28 Make: Lexus 0.4432 1.73e-117
Body Type: Crew Cab -0.0002 0.993 Make: Lincoln -0.1652 2.54e-16
Body Type: Extended Cab -0.0943 3.19e-06 Make: Lotus 0.1232 1.11e-09
Body Type: Hatchback 0.3352 7.16e-65 Make: Maserati 0.1096 6.05e-08
Body Type: Minivan 0.0833 3.94e-05 Make: Maybach 0.0570 0.00494
Body Type: Regular Cab -0.2179 1.7e-27 Make: Mazda 0.2094 1.76e-25
Body Type: Sedan -0.1537 2.62e-14 Make: Mclaren 0.1002 7.54e-07
Body Type: SUV 0.3136 1.34e-56 Make: Mercedes-Benz 0.3873 8.94e-88
Body Type: Van -0.0391 0.0542 Make: Mercury -0.3367 1.71e-65
Body Type: Wagon 0.1776 1.14e-18 Make: Mini 0.2749 2.21e-43
Year: 1990-1994 -0.3230 4.21e-60 Make: Mitsubishi -0.0739 0.000269
Year: 1995-1999 -0.4202 1.5e-104 Make: Nissan 0.0894 1.01e-05
Year: 2000-2004 0.2043 2.56e-24 Make: Oldsmobile -0.3964 3.12e-92
Year: 2005-2009 0.3864 2.38e-87 Make: Panoz 0.0507 0.0124
Year: 2010-2014 0.3694 2.01e-79 Make: Plymouth -0.2496 7.85e-36
Make: Acura 0.3528 3.78e-72 Make: Pontiac -0.3805 1.46e-84
Make: AM General 0.0008 0.969 Make: Porsche 0.2967 1.45e-50
Make: Aston Martin 0.0934 4e-06 Make: Ram -0.0513 0.0114
Make: Audi 0.3420 1.19e-67 Make: Rolls-Royce 0.0843 3.18e-05
Make: Bentley -0.0319 0.115 Make: Saab 0.2215 2.14e-28
Make: BMW 0.3939 5.53e-91 Make: Saturn -0.0793 9.11e-05
Make: Buick -0.3975 8.43e-93 Make: Scion 0.2463 6.47e-35
Make: Cadillac -0.3248 8.39e-61 Make: Smart 0.1464 4.15e-13
Make: Chevrolet -0.3553 3.08e-73 Make: Subaru 0.1727 1.03e-17
Make: Chrysler -0.2720 1.81e-42 Make: Suzuki -0.0679 0.000817
Make: Daewoo -0.0214 0.293 Make: Tesla 0.0860 2.19e-05
Make: Dodge -0.3807 1.22e-84 Make: Toyota 0.4239 1.43e-106
Make: Eagle -0.2009 1.55e-23 Make: Volkswagen 0.3014 3.24e-52
Make: Ferrari 0.0694 0.000619 Make: Volvo 0.2398 3.9e-33

Table S4. Pearson r correlation coefficients and their associated p-
values for each car attribute between median household income and
each car attribute, at the zip code level. p-values are with respect to
the null hypothesis of no correlation.
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Variable Pearson’s r p-value Variable Pearson’s r p-value

Price -0.3333 4e-64 Make: Fiat -0.0721 0.000372
Cars/Image 0.1246 7.06e-10 Make: Fisker -0.1153 1.19e-08
MPG Highway -0.2920 5.69e-49 Make: Ford 0.2991 2.1e-51
MPG City -0.3182 2.57e-58 Make: Geo 0.1532 3.18e-14
Hybrid -0.1331 4.43e-11 Make: GMC 0.1745 4.48e-18
Electric -0.1508 7.82e-14 Make: Honda -0.2530 8.23e-37
Foreign -0.2955 3.64e-50 Make: Hummer 0.0199 0.328
Country: England -0.2434 4.13e-34 Make: Hyundai -0.3468 1.26e-69
Country: Germany -0.3029 1.01e-52 Make: Infiniti -0.1423 1.8e-12
Country: Italy -0.1587 3.6e-15 Make: Isuzu 0.1501 1.03e-13
Country: Japan -0.2301 1.45e-30 Make: Jaguar -0.0182 0.37
Country: South Korea -0.3456 4.03e-69 Make: Jeep -0.2030 5.22e-24
Country: Sweden -0.3541 1.04e-72 Make: Kia -0.1942 4.4e-22
Country: USA 0.2955 3.64e-50 Make: Lamborghini -0.1403 3.68e-12
Body Type: Convertible -0.2246 3.67e-29 Make: Land Rover -0.1698 3.55e-17
Body Type: Coupe 0.0892 1.06e-05 Make: Lexus -0.2421 9.4e-34
Body Type: Crew Cab 0.1080 9.47e-08 Make: Lincoln 0.1483 2.05e-13
Body Type: Extended Cab 0.2204 3.98e-28 Make: Lotus -0.0684 0.000745
Body Type: Hatchback -0.3445 1.13e-68 Make: Maserati -0.0745 0.000239
Body Type: Minivan -0.0206 0.31 Make: Maybach -0.0537 0.00806
Body Type: Regular Cab 0.2732 7.55e-43 Make: Mazda -0.2595 1.11e-38
Body Type: Sedan -0.0173 0.395 Make: Mclaren -0.0764 0.000164
Body Type: SUV -0.2361 3.88e-32 Make: Mercedes-Benz -0.1895 4.47e-21
Body Type: Van 0.2208 3.32e-28 Make: Mercury 0.0984 1.16e-06
Body Type: Wagon -0.3888 1.55e-88 Make: Mini -0.2471 3.94e-35
Year: 1990-1994 0.3230 3.87e-60 Make: Mitsubishi 0.1061 1.58e-07
Year: 1995-1999 0.3715 2.12e-80 Make: Nissan 0.1217 1.78e-09
Year: 2000-2004 -0.1652 2.5e-16 Make: Oldsmobile 0.1131 2.24e-08
Year: 2005-2009 -0.3831 8.51e-86 Make: Panoz -0.1770 1.47e-18
Year: 2010-2014 -0.3296 1.17e-62 Make: Plymouth 0.1237 9.6e-10
Make: Acura -0.1895 4.45e-21 Make: Pontiac 0.0520 0.0103
Make: AM General 0.0676 0.00085 Make: Porsche -0.2387 8.08e-33
Make: Aston Martin -0.1157 1.07e-08 Make: Ram -0.0817 5.54e-05
Make: Audi -0.3176 4.47e-58 Make: Rolls-Royce -0.1050 2.12e-07
Make: Bentley 0.0356 0.0792 Make: Saab -0.2844 1.93e-46
Make: BMW -0.1956 2.24e-22 Make: Saturn -0.1775 1.19e-18
Make: Buick 0.0353 0.0822 Make: Scion -0.1481 2.14e-13
Make: Cadillac 0.1866 1.81e-20 Make: Smart -0.1571 6.68e-15
Make: Chevrolet 0.3183 2.46e-58 Make: Subaru -0.3597 3.82e-75
Make: Chrysler 0.0264 0.194 Make: Suzuki -0.0054 0.79
Make: Daewoo 0.0122 0.548 Make: Tesla -0.0661 0.00112
Make: Dodge 0.2208 3.24e-28 Make: Toyota -0.1686 6.02e-17
Make: Eagle 0.0612 0.00254 Make: Volkswagen -0.2975 7.55e-51
Make: Ferrari -0.0584 0.00396 Make: Volvo -0.3376 7.58e-66

Table S5. Pearson r correlation coefficients and their associated p-
values for each car attribute between the percentage of residents
who did not graduate high school and each car attribute, at the zip
code level.
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Variable Pearson’s r p-value Variable Pearson’s r p-value

Price -0.4345 1.91e-112 Make: Fiat -0.0925 4.9e-06
Cars/Image -0.2684 2.34e-41 Make: Fisker -0.1364 1.45e-11
MPG Highway -0.3294 1.33e-62 Make: Ford 0.3735 2.78e-81
MPG City -0.4373 4.66e-114 Make: Geo 0.1799 4.06e-19
Hybrid -0.1288 1.88e-10 Make: GMC 0.2760 1.01e-43
Electric -0.2963 1.92e-50 Make: Honda -0.5371 1.12e-181
Foreign -0.6048 2.04e-242 Make: Hummer -0.0502 0.0134
Country: England -0.4811 5.74e-141 Make: Hyundai -0.0521 0.0102
Country: Germany -0.6142 5.35e-252 Make: Infiniti -0.3755 3.16e-82
Country: Italy -0.2462 6.92e-35 Make: Isuzu 0.0364 0.0731
Country: Japan -0.5670 9.84e-207 Make: Jaguar -0.0201 0.322
Country: South Korea -0.0235 0.247 Make: Jeep -0.0247 0.223
Country: Sweden -0.4033 9.8e-96 Make: Kia 0.0442 0.0292
Country: USA 0.6048 2.04e-242 Make: Lamborghini -0.1902 3.14e-21
Body Type: Convertible -0.2258 1.84e-29 Make: Land Rover -0.4198 2.38e-104
Body Type: Coupe 0.1453 6.19e-13 Make: Lexus -0.4841 5.05e-143
Body Type: Crew Cab 0.1141 1.69e-08 Make: Lincoln 0.2109 7.74e-26
Body Type: Extended Cab 0.2023 7.48e-24 Make: Lotus -0.0922 5.33e-06
Body Type: Hatchback -0.5576 1.38e-198 Make: Maserati -0.1612 1.3e-15
Body Type: Minivan 0.0811 6.31e-05 Make: Maybach -0.0328 0.106
Body Type: Regular Cab 0.3076 2.01e-54 Make: Mazda -0.3406 4.81e-67
Body Type: Sedan 0.0382 0.0601 Make: Mclaren -0.1054 1.89e-07
Body Type: SUV -0.2750 1.97e-43 Make: Mercedes-Benz -0.4409 3.81e-116
Body Type: Van 0.0753 0.000204 Make: Mercury 0.3778 2.66e-83
Body Type: Wagon -0.3653 1.41e-77 Make: Mini -0.4305 3.09e-110
Year: 1990-1994 0.3364 2.25e-65 Make: Mitsubishi 0.0650 0.00135
Year: 1995-1999 0.4220 1.51e-105 Make: Nissan -0.1273 3.02e-10
Year: 2000-2004 -0.2078 4.08e-25 Make: Oldsmobile 0.4061 3.97e-97
Year: 2005-2009 -0.4040 4.68e-96 Make: Panoz -0.0190 0.349
Year: 2010-2014 -0.3541 1.06e-72 Make: Plymouth 0.3036 5.54e-53
Make: Acura -0.3951 1.3e-91 Make: Pontiac 0.3608 1.34e-75
Make: AM General 0.0806 6.91e-05 Make: Porsche -0.3736 2.44e-81
Make: Aston Martin -0.1640 4.18e-16 Make: Ram 0.1413 2.58e-12
Make: Audi -0.4816 2.64e-141 Make: Rolls-Royce -0.1119 3.19e-08
Make: Bentley 0.0386 0.0569 Make: Saab -0.3086 8.85e-55
Make: BMW -0.5318 1.81e-177 Make: Saturn 0.0705 0.000509
Make: Buick 0.4488 9.49e-121 Make: Scion -0.2673 5e-41
Make: Cadillac 0.3722 1.01e-80 Make: Smart -0.2644 3.66e-40
Make: Chevrolet 0.4747 8.44e-137 Make: Subaru -0.3302 6.37e-63
Make: Chrysler 0.3358 3.92e-65 Make: Suzuki -0.0052 0.8
Make: Daewoo -0.0043 0.832 Make: Tesla -0.1519 5.15e-14
Make: Dodge 0.5527 1.99e-194 Make: Toyota -0.5068 9.3e-159
Make: Eagle 0.1834 7.98e-20 Make: Volkswagen -0.5290 2.39e-175
Make: Ferrari -0.1523 4.5e-14 Make: Volvo -0.3879 4.55e-88

Table S6. Pearson r correlation coefficients and their associated p-
values for each car attribute between the percentage of residents
with a high school degree and each car attribute, at the zip code
level.
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Variable Pearson’s r p-value Variable Pearson’s r p-value

Price -0.2577 3.62e-38 Make: Fiat -0.0947 2.92e-06
Cars/Image -0.4257 1.43e-107 Make: Fisker -0.1472 3.03e-13
MPG Highway -0.3847 1.5e-86 Make: Ford 0.2781 2.18e-44
MPG City -0.3933 1.01e-90 Make: Geo 0.0910 7e-06
Hybrid -0.1792 5.51e-19 Make: GMC 0.2901 2.46e-48
Electric -0.2099 1.35e-25 Make: Honda -0.3382 4.53e-66
Foreign -0.3834 6.37e-86 Make: Hummer -0.0548 0.00693
Country: England -0.4480 2.85e-120 Make: Hyundai -0.1058 1.72e-07
Country: Germany -0.4791 1.16e-139 Make: Infiniti -0.3544 7.84e-73
Country: Italy -0.2939 1.25e-49 Make: Isuzu 0.0305 0.133
Country: Japan -0.3221 8.96e-60 Make: Jaguar -0.2449 1.61e-34
Country: South Korea -0.0805 7.07e-05 Make: Jeep -0.0230 0.257
Country: Sweden -0.2889 6.45e-48 Make: Kia 0.0052 0.799
Country: USA 0.3834 6.37e-86 Make: Lamborghini -0.2414 1.48e-33
Body Type: Convertible -0.0883 1.29e-05 Make: Land Rover -0.3614 7.2e-76
Body Type: Coupe 0.0791 9.54e-05 Make: Lexus -0.2781 2.03e-44
Body Type: Crew Cab 0.3601 2.67e-75 Make: Lincoln -0.0891 1.08e-05
Body Type: Extended Cab 0.4391 4.61e-115 Make: Lotus -0.1283 2.21e-10
Body Type: Hatchback -0.3453 5.36e-69 Make: Maserati -0.1971 1.06e-22
Body Type: Minivan -0.0567 0.00514 Make: Maybach -0.0698 0.000579
Body Type: Regular Cab 0.4194 3.99e-104 Make: Mazda -0.2630 1.02e-39
Body Type: Sedan -0.2780 2.2e-44 Make: Mclaren -0.1225 1.37e-09
Body Type: SUV -0.1038 2.89e-07 Make: Mercedes-Benz -0.3848 1.29e-86
Body Type: Van -0.1936 5.98e-22 Make: Mercury 0.0195 0.337
Body Type: Wagon -0.1893 4.75e-21 Make: Mini -0.3150 4.19e-57
Year: 1990-1994 0.2961 2.2e-50 Make: Mitsubishi 0.0614 0.00248
Year: 1995-1999 0.1242 8.16e-10 Make: Nissan -0.1723 1.17e-17
Year: 2000-2004 -0.0270 0.183 Make: Oldsmobile 0.1694 4.19e-17
Year: 2005-2009 -0.2729 9.06e-43 Make: Panoz -0.0402 0.0474
Year: 2010-2014 -0.2570 5.71e-38 Make: Plymouth 0.0452 0.0259
Make: Acura -0.3662 5.09e-78 Make: Pontiac 0.1203 2.66e-09
Make: AM General 0.1799 3.94e-19 Make: Porsche -0.3172 6.45e-58
Make: Aston Martin -0.1173 6.6e-09 Make: Ram 0.1174 6.41e-09
Make: Audi -0.4422 6.62e-117 Make: Rolls-Royce -0.2056 1.33e-24
Make: Bentley -0.0002 0.992 Make: Saab -0.3364 2.3e-65
Make: BMW -0.4488 9.54e-121 Make: Saturn 0.1309 9.42e-11
Make: Buick 0.1495 1.28e-13 Make: Scion -0.0187 0.358
Make: Cadillac 0.1507 8.26e-14 Make: Smart -0.2235 6.88e-29
Make: Chevrolet 0.3650 1.81e-77 Make: Subaru -0.1721 1.32e-17
Make: Chrysler 0.0675 0.000878 Make: Suzuki -0.0502 0.0133
Make: Daewoo -0.0027 0.893 Make: Tesla -0.0891 1.1e-05
Make: Dodge 0.4096 5.97e-99 Make: Toyota -0.2077 4.24e-25
Make: Eagle 0.0409 0.0438 Make: Volkswagen -0.3294 1.31e-62
Make: Ferrari -0.1439 1.02e-12 Make: Volvo -0.2526 1.08e-36

Table S7. Pearson r correlation coefficients and their associated p-
values for each car attribute between the percentage of residents
with a some amount of college-level education and each car attribute,
at the zip code level.
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Variable Pearson’s r p-value Variable Pearson’s r p-value

Price 0.4762 9.32e-138 Make: Fiat 0.1001 7.63e-07
Cars/Image 0.1769 1.53e-18 Make: Fisker 0.1594 2.75e-15
MPG Highway 0.4188 8.61e-104 Make: Ford -0.4310 1.68e-110
MPG City 0.4928 6.96e-149 Make: Geo -0.1954 2.48e-22
Hybrid 0.1709 2.16e-17 Make: GMC -0.3045 2.61e-53
Electric 0.2644 3.8e-40 Make: Honda 0.5044 5.55e-157
Foreign 0.5761 7.19e-215 Make: Hummer 0.0296 0.145
Country: England 0.4858 3.69e-144 Make: Hyundai 0.2421 9.39e-34
Country: Germany 0.5990 1.41e-236 Make: Infiniti 0.3671 2.2e-78
Country: Italy 0.2677 3.81e-41 Make: Isuzu -0.1013 5.61e-07
Country: Japan 0.5101 4.13e-161 Make: Jaguar 0.0730 0.000314
Country: South Korea 0.2224 1.28e-28 Make: Jeep 0.1450 6.77e-13
Country: Sweden 0.4482 2.03e-120 Make: Kia 0.0877 1.51e-05
Country: USA -0.5761 7.19e-215 Make: Lamborghini 0.2240 5.22e-29
Body Type: Convertible 0.2604 5.8e-39 Make: Land Rover 0.3980 4.81e-93
Body Type: Coupe -0.1435 1.17e-12 Make: Lexus 0.4678 2.14e-132
Body Type: Crew Cab -0.1952 2.66e-22 Make: Lincoln -0.1939 5.15e-22
Body Type: Extended Cab -0.3285 3e-62 Make: Lotus 0.1168 7.61e-09
Body Type: Hatchback 0.5563 1.63e-197 Make: Maserati 0.1667 1.33e-16
Body Type: Minivan -0.0054 0.789 Make: Maybach 0.0604 0.00292
Body Type: Regular Cab -0.4164 1.62e-102 Make: Mazda 0.3960 4.65e-92
Body Type: Sedan 0.0435 0.0322 Make: Mclaren 0.1201 2.86e-09
Body Type: SUV 0.3200 5.67e-59 Make: Mercedes-Benz 0.4196 2.85e-104
Body Type: Van -0.1251 6.18e-10 Make: Mercury -0.2760 9.64e-44
Body Type: Wagon 0.4356 4.55e-113 Make: Mini 0.4333 8.48e-112
Year: 1990-1994 -0.4318 5.94e-111 Make: Mitsubishi -0.0962 2.04e-06
Year: 1995-1999 -0.4575 5.71e-126 Make: Nissan 0.0588 0.00375
Year: 2000-2004 0.2168 3.01e-27 Make: Oldsmobile -0.3223 7.67e-60
Year: 2005-2009 0.4910 1.18e-147 Make: Panoz 0.1190 4.04e-09
Year: 2010-2014 0.4297 8.57e-110 Make: Plymouth -0.2432 4.71e-34
Make: Acura 0.3970 1.45e-92 Make: Pontiac -0.2527 1.01e-36
Make: AM General -0.1202 2.76e-09 Make: Porsche 0.3995 8.61e-94
Make: Aston Martin 0.1597 2.35e-15 Make: Ram -0.0559 0.00582
Make: Audi 0.5247 4.77e-172 Make: Rolls-Royce 0.1492 1.43e-13
Make: Bentley -0.0555 0.00625 Make: Saab 0.3839 3.61e-86
Make: BMW 0.4894 1.41e-146 Make: Saturn 0.0338 0.0959
Make: Buick -0.3060 7.86e-54 Make: Scion 0.2404 2.71e-33
Make: Cadillac -0.3432 3.96e-68 Make: Smart 0.2721 1.68e-42
Make: Chevrolet -0.5134 1.48e-163 Make: Subaru 0.3973 1.04e-92
Make: Chrysler -0.2066 7.9e-25 Make: Suzuki 0.0255 0.209
Make: Daewoo -0.0122 0.548 Make: Tesla 0.1318 7.03e-11
Make: Dodge -0.5082 8.88e-160 Make: Toyota 0.4168 9.85e-103
Make: Eagle -0.1532 3.08e-14 Make: Volkswagen 0.5222 4.34e-170
Make: Ferrari 0.1161 9.6e-09 Make: Volvo 0.4221 1.32e-105

Table S8. Pearson r correlation coefficients and their associated p-
values for each car attribute between the percentage of residents
with a bachelor’s degree and each car attribute, at the zip code level.
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Variable Pearson’s r p-value Variable Pearson’s r p-value

Price 0.4799 3.15e-140 Make: Fiat 0.1333 4.16e-11
Cars/Image 0.2212 2.65e-28 Make: Fisker 0.2006 1.81e-23
MPG Highway 0.4867 9.11e-145 Make: Ford -0.4457 6.03e-119
MPG City 0.5451 3.44e-188 Make: Geo -0.2069 6.79e-25
Hybrid 0.2256 2.05e-29 Make: GMC -0.3500 6.06e-71
Electric 0.3236 2.45e-60 Make: Honda 0.5075 3.17e-159
Foreign 0.5775 3.65e-216 Make: Hummer 0.0311 0.125
Country: England 0.5434 8.86e-187 Make: Hyundai 0.2812 2.12e-45
Country: Germany 0.6397 8.72e-280 Make: Infiniti 0.3845 1.91e-86
Country: Italy 0.3448 8.8e-69 Make: Isuzu -0.1266 3.78e-10
Country: Japan 0.4903 3.53e-147 Make: Jaguar 0.1406 3.33e-12
Country: South Korea 0.2560 1.16e-37 Make: Jeep 0.1283 2.21e-10
Country: Sweden 0.5266 1.77e-173 Make: Kia 0.0941 3.34e-06
Country: USA -0.5775 3.65e-216 Make: Lamborghini 0.2799 5.56e-45
Body Type: Convertible 0.2634 7.39e-40 Make: Land Rover 0.4297 8.43e-110
Body Type: Coupe -0.1454 6.02e-13 Make: Lexus 0.4415 1.86e-116
Body Type: Crew Cab -0.2882 1.05e-47 Make: Lincoln -0.1016 5.15e-07
Body Type: Extended Cab -0.4198 2.35e-104 Make: Lotus 0.1358 1.8e-11
Body Type: Hatchback 0.5848 6.04e-223 Make: Maserati 0.2035 3.99e-24
Body Type: Minivan -0.0024 0.905 Make: Maybach 0.0808 6.63e-05
Body Type: Regular Cab -0.4727 1.7e-135 Make: Mazda 0.3948 1.91e-91
Body Type: Sedan 0.1410 2.89e-12 Make: Mclaren 0.1495 1.27e-13
Body Type: SUV 0.2720 1.79e-42 Make: Mercedes-Benz 0.4664 1.53e-131
Body Type: Van -0.0593 0.00345 Make: Mercury -0.1878 1.01e-20
Body Type: Wagon 0.4746 9.77e-137 Make: Mini 0.4604 9.23e-128
Year: 1990-1994 -0.4526 4.82e-123 Make: Mitsubishi -0.1283 2.21e-10
Year: 1995-1999 -0.4365 1.25e-113 Make: Nissan 0.0365 0.0721
Year: 2000-2004 0.1785 7.62e-19 Make: Oldsmobile -0.2907 1.59e-48
Year: 2005-2009 0.5065 1.59e-158 Make: Panoz 0.1316 7.47e-11
Year: 2010-2014 0.4501 1.58e-121 Make: Plymouth -0.2022 7.88e-24
Make: Acura 0.4350 9.08e-113 Make: Pontiac -0.2142 1.3e-26
Make: AM General -0.1582 4.44e-15 Make: Porsche 0.4353 6.14e-113
Make: Aston Martin 0.2038 3.39e-24 Make: Ram -0.0590 0.00363
Make: Audi 0.5867 8.92e-225 Make: Rolls-Royce 0.2186 1.11e-27
Make: Bentley -0.0199 0.326 Make: Saab 0.4599 1.93e-127
Make: BMW 0.5301 3.5e-176 Make: Saturn 0.0157 0.441
Make: Buick -0.2406 2.42e-33 Make: Scion 0.1821 1.49e-19
Make: Cadillac -0.3113 9.66e-56 Make: Smart 0.3045 2.64e-53
Make: Chevrolet -0.5376 4.31e-182 Make: Subaru 0.4357 4.02e-113
Make: Chrysler -0.1708 2.34e-17 Make: Suzuki 0.0211 0.298
Make: Daewoo 0.0039 0.849 Make: Tesla 0.1434 1.22e-12
Make: Dodge -0.5311 5.83e-177 Make: Toyota 0.3773 4.59e-83
Make: Eagle -0.1099 5.66e-08 Make: Volkswagen 0.5278 2.34e-174
Make: Ferrari 0.1898 3.87e-21 Make: Volvo 0.4940 1.02e-149

Table S9. Pearson r correlation coefficients and their associated p-
values for each car attribute between the percentage of residents
with a graduate or professional degree and each car attribute, at the
zip code level.
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%Less Than High School %High School %Some College
Rank Variable Pearson’s r Variable Pearson’s r Variable Pearson’s r

1 Year: 1995-1999 0.3715 Country: USA 0.6048 Body Type: Extended Cab 0.4391
2 Year: 1990-1994 0.3230 Make: Dodge 0.5527 Body Type: Regular Cab 0.4194
3 Make: Chevrolet 0.3183 Make: Chevrolet 0.4747 Make: Dodge 0.4096
4 Make: Ford 0.2991 Make: Buick 0.4488 Country: USA 0.3834
5 Country: USA 0.2955 Year: 1995-1999 0.4220 Make: Chevrolet 0.3650

84 Make: Hyundai -0.3468 Make: Honda -0.5371 Cars/Image -0.4257
85 Country: Sweden -0.3541 Body Type: Hatchback -0.5576 Make: Audi -0.4422
86 Make: Subaru -0.3597 Country: Japan -0.5670 Country: England -0.4480
87 Year: 2005-2009 -0.3831 Foreign -0.6048 Make: BMW -0.4488
88 Body Type: Wagon -0.3888 Country: Germany -0.6142 Country: Germany -0.4791

%Bachelor’s Degree %Graduate Degree
Rank Variable Pearson’s r Variable Pearson’s r

1 Country: Germany 0.5990 Country: Germany 0.6397
2 Foreign 0.5761 Make: Audi 0.5867
3 Body Type: Hatchback 0.5563 Body Type: Hatchback 0.5848
4 Make: Audi 0.5247 Foreign 0.5775
5 Make: Volkswagen 0.5222 MPG City 0.5451

84 Year: 1990-1994 -0.4318 Year: 1990-1994 -0.4526
85 Year: 1995-1999 -0.4575 Body Type: Regular Cab -0.4727
86 Make: Dodge -0.5082 Make: Dodge -0.5311
87 Make: Chevrolet -0.5134 Make: Chevrolet -0.5376
88 Country: USA -0.5761 Country: USA -0.5775

Table S10. The five car attributes that correlate most positively and
most negatively with the percentage of each education level in zip
code.

Timnit Gebru, Jonathan Krause, Yilun Wang, Duyun Chen, Jia Deng, Erez Lieberman Aiden, Li Fei-Fei 53 of 58



Variable Pearson’s r p-value Variable Pearson’s r p-value

Price 0.2182 1.39e-27 Make: Fiat 0.0370 0.0679
Cars/Image -0.1478 2.42e-13 Make: Fisker 0.0113 0.579
MPG Highway -0.0753 0.000205 Make: Ford 0.0559 0.00582
MPG City -0.0008 0.967 Make: Geo -0.0557 0.00606
Hybrid -0.0068 0.739 Make: GMC 0.0536 0.00819
Electric 0.0560 0.00575 Make: Honda 0.0045 0.823
Foreign 0.0358 0.0778 Make: Hummer 0.0877 1.49e-05
Country: England 0.0422 0.0376 Make: Hyundai 0.1538 2.46e-14
Country: Germany 0.0572 0.00478 Make: Infiniti -0.1273 3.03e-10
Country: Italy 0.0290 0.153 Make: Isuzu -0.0218 0.283
Country: Japan 0.0075 0.712 Make: Jaguar -0.2120 4.21e-26
Country: South Korea 0.1635 4.96e-16 Make: Jeep 0.2893 4.6e-48
Country: Sweden 0.0749 0.000219 Make: Kia 0.1149 1.34e-08
Country: USA -0.0358 0.0778 Make: Lamborghini 0.0407 0.0451
Body Type: Convertible 0.0727 0.000332 Make: Land Rover 0.0686 0.000718
Body Type: Coupe -0.1948 3.29e-22 Make: Lexus -0.0263 0.194
Body Type: Crew Cab 0.1986 4.98e-23 Make: Lincoln -0.3003 7.7e-52
Body Type: Extended Cab 0.2041 2.97e-24 Make: Lotus 0.0438 0.0308
Body Type: Hatchback 0.1702 2.95e-17 Make: Maserati -0.0308 0.129
Body Type: Minivan -0.0093 0.647 Make: Maybach -0.0355 0.08
Body Type: Regular Cab 0.1237 9.42e-10 Make: Mazda 0.0734 0.000295
Body Type: Sedan -0.4181 1.84e-103 Make: Mclaren 0.0066 0.745
Body Type: SUV 0.3053 1.37e-53 Make: Mercedes-Benz -0.1011 5.86e-07
Body Type: Van -0.1390 6.01e-12 Make: Mercury -0.2581 2.76e-38
Body Type: Wagon 0.2153 7.21e-27 Make: Mini 0.1182 5.13e-09
Year: 1990-1994 -0.1668 1.28e-16 Make: Mitsubishi -0.0663 0.00107
Year: 1995-1999 -0.2599 8.08e-39 Make: Nissan -0.1289 1.8e-10
Year: 2000-2004 0.1514 6.23e-14 Make: Oldsmobile -0.2065 8.01e-25
Year: 2005-2009 0.2104 1e-25 Make: Panoz 0.0313 0.123
Year: 2010-2014 0.1864 1.97e-20 Make: Plymouth -0.1291 1.69e-10
Make: Acura -0.0497 0.0142 Make: Pontiac -0.1455 5.67e-13
Make: AM General 0.0649 0.00137 Make: Porsche 0.0839 3.48e-05
Make: Aston Martin 0.0098 0.629 Make: Ram 0.0635 0.00174
Make: Audi 0.1198 3.18e-09 Make: Rolls-Royce -0.0234 0.25
Make: Bentley -0.1299 1.29e-10 Make: Saab 0.1443 8.86e-13
Make: BMW -0.0357 0.0789 Make: Saturn 0.0590 0.00359
Make: Buick -0.2529 8.89e-37 Make: Scion 0.1415 2.42e-12
Make: Cadillac -0.3535 1.93e-72 Make: Smart 0.1069 1.29e-07
Make: Chevrolet 0.0097 0.632 Make: Subaru 0.2397 4.34e-33
Make: Chrysler -0.2134 1.96e-26 Make: Suzuki 0.0349 0.0855
Make: Daewoo -0.0324 0.111 Make: Tesla 0.0339 0.0946
Make: Dodge 0.0648 0.00139 Make: Toyota 0.0034 0.867
Make: Eagle -0.1144 1.55e-08 Make: Volkswagen 0.1827 1.09e-19
Make: Ferrari -0.0134 0.509 Make: Volvo 0.0531 0.00887

Table S11. Pearson r correlation coefficients and their associated
p-values for each car attribute between the percentage of white resi-
dents and each car attribute, at the zip code level.
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Variable Pearson’s r p-value Variable Pearson’s r p-value

Price -0.1895 4.4e-21 Make: Fiat -0.0250 0.217
Cars/Image -0.0710 0.000459 Make: Fisker 0.0304 0.134
MPG Highway 0.0465 0.0218 Make: Ford 0.0432 0.033
MPG City -0.0832 4.05e-05 Make: Geo 0.0196 0.335
Hybrid 0.0466 0.0217 Make: GMC 0.0281 0.167
Electric -0.0942 3.32e-06 Make: Honda -0.2304 1.24e-30
Foreign -0.2580 2.97e-38 Make: Hummer -0.0968 1.76e-06
Country: England -0.0640 0.00161 Make: Hyundai 0.0248 0.221
Country: Germany -0.1650 2.75e-16 Make: Infiniti 0.0334 0.0998
Country: Italy -0.0033 0.87 Make: Isuzu -0.0659 0.00116
Country: Japan -0.2855 8.43e-47 Make: Jaguar 0.2494 8.76e-36
Country: South Korea 0.0273 0.178 Make: Jeep -0.1016 5.19e-07
Country: Sweden -0.0272 0.181 Make: Kia 0.0188 0.355
Country: USA 0.2580 2.97e-38 Make: Lamborghini -0.0171 0.399
Body Type: Convertible -0.0265 0.191 Make: Land Rover -0.0994 9.16e-07
Body Type: Coupe 0.2151 7.87e-27 Make: Lexus -0.1338 3.58e-11
Body Type: Crew Cab -0.1996 2.93e-23 Make: Lincoln 0.4088 1.57e-98
Body Type: Extended Cab -0.2583 2.52e-38 Make: Lotus -0.0515 0.0111
Body Type: Hatchback -0.2692 1.32e-41 Make: Maserati 0.0424 0.0366
Body Type: Minivan -0.0707 0.00049 Make: Maybach 0.0712 0.000443
Body Type: Regular Cab -0.1403 3.68e-12 Make: Mazda -0.1301 1.22e-10
Body Type: Sedan 0.4421 7.52e-117 Make: Mclaren -0.0252 0.215
Body Type: SUV -0.2267 1.05e-29 Make: Mercedes-Benz -0.0204 0.314
Body Type: Van 0.0799 7.98e-05 Make: Mercury 0.4479 3.12e-120
Body Type: Wagon -0.1386 6.71e-12 Make: Mini -0.1564 9.09e-15
Year: 1990-1994 0.0795 8.65e-05 Make: Mitsubishi 0.0176 0.386
Year: 1995-1999 0.2483 1.86e-35 Make: Nissan -0.0285 0.16
Year: 2000-2004 -0.1324 5.73e-11 Make: Oldsmobile 0.3670 2.24e-78
Year: 2005-2009 -0.1417 2.25e-12 Make: Panoz 0.1011 5.96e-07
Year: 2010-2014 -0.1408 3.11e-12 Make: Plymouth 0.2056 1.3e-24
Make: Acura -0.0751 0.000212 Make: Pontiac 0.3529 3.4e-72
Make: AM General -0.0647 0.00142 Make: Porsche -0.0925 4.9e-06
Make: Aston Martin 0.0086 0.671 Make: Ram 0.0667 0.000998
Make: Audi -0.1189 4.17e-09 Make: Rolls-Royce 0.0955 2.39e-06
Make: Bentley 0.1577 5.27e-15 Make: Saab -0.0704 0.000516
Make: BMW -0.1151 1.29e-08 Make: Saturn 0.0510 0.0119
Make: Buick 0.4922 1.73e-148 Make: Scion -0.2472 3.83e-35
Make: Cadillac 0.5015 6.37e-155 Make: Smart -0.1127 2.58e-08
Make: Chevrolet 0.1058 1.71e-07 Make: Subaru -0.1821 1.46e-19
Make: Chrysler 0.4137 4.29e-101 Make: Suzuki -0.0578 0.00436
Make: Daewoo 0.0187 0.358 Make: Tesla -0.0672 0.000924
Make: Dodge 0.1010 6.02e-07 Make: Toyota -0.3335 3.34e-64
Make: Eagle 0.2003 2.04e-23 Make: Volkswagen -0.2372 1.97e-32
Make: Ferrari 0.0199 0.326 Make: Volvo -0.0153 0.451

Table S12. Pearson r correlation coefficients and their associated
p-values for each car attribute between the percentage of black resi-
dents and each car attribute, at the zip code level.
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Variable Pearson’s r p-value Variable Pearson’s r p-value

Price 0.1130 2.32e-08 Make: Fiat -0.0092 0.651
Cars/Image 0.3179 3.54e-58 Make: Fisker -0.0110 0.587
MPG Highway 0.2580 2.93e-38 Make: Ford -0.3324 8.99e-64
MPG City 0.3379 5.95e-66 Make: Geo -0.0159 0.433
Hybrid 0.0140 0.49 Make: GMC -0.2607 4.7e-39
Electric 0.1512 6.73e-14 Make: Honda 0.5174 1.56e-166
Foreign 0.5162 1.34e-165 Make: Hummer -0.0058 0.775
Country: England 0.1797 4.47e-19 Make: Hyundai -0.1209 2.28e-09
Country: Germany 0.3445 1.14e-68 Make: Infiniti 0.2498 6.76e-36
Country: Italy 0.0566 0.00525 Make: Isuzu 0.0369 0.0687
Country: Japan 0.5727 7.39e-212 Make: Jaguar 0.0279 0.169
Country: South Korea -0.1476 2.67e-13 Make: Jeep -0.2754 1.51e-43
Country: Sweden 0.0857 2.33e-05 Make: Kia -0.1391 5.78e-12
Country: USA -0.5162 1.34e-165 Make: Lamborghini 0.0505 0.0127
Body Type: Convertible 0.0381 0.0602 Make: Land Rover 0.1286 1.98e-10
Body Type: Coupe -0.0233 0.251 Make: Lexus 0.4142 2.16e-101
Body Type: Crew Cab -0.1247 6.92e-10 Make: Lincoln -0.1779 1e-18
Body Type: Extended Cab -0.1183 4.99e-09 Make: Lotus 0.0609 0.00265
Body Type: Hatchback 0.3293 1.54e-62 Make: Maserati 0.0355 0.0804
Body Type: Minivan 0.1799 4.09e-19 Make: Maybach -0.0151 0.458
Body Type: Regular Cab -0.1631 5.93e-16 Make: Mazda 0.2303 1.33e-30
Body Type: Sedan 0.0961 2.05e-06 Make: Mclaren 0.0742 0.00025
Body Type: SUV -0.1002 7.39e-07 Make: Mercedes-Benz 0.3549 4.99e-73
Body Type: Van 0.0378 0.0628 Make: Mercury -0.2835 3.67e-46
Body Type: Wagon 0.0187 0.356 Make: Mini 0.1919 1.41e-21
Year: 1990-1994 -0.0363 0.0739 Make: Mitsubishi 0.0137 0.5
Year: 1995-1999 -0.1500 1.08e-13 Make: Nissan 0.1730 8.91e-18
Year: 2000-2004 0.0434 0.0324 Make: Oldsmobile -0.2771 4.28e-44
Year: 2005-2009 0.0888 1.17e-05 Make: Panoz -0.1239 8.9e-10
Year: 2010-2014 0.0879 1.43e-05 Make: Plymouth -0.1663 1.56e-16
Make: Acura 0.3251 6.24e-61 Make: Pontiac -0.3100 2.91e-55
Make: AM General -0.0515 0.0111 Make: Porsche 0.1269 3.48e-10
Make: Aston Martin 0.0266 0.19 Make: Ram -0.1782 8.81e-19
Make: Audi 0.1654 2.31e-16 Make: Rolls-Royce -0.0467 0.0213
Make: Bentley -0.0346 0.0878 Make: Saab 0.0064 0.753
Make: BMW 0.3801 2.18e-84 Make: Saturn -0.1075 1.08e-07
Make: Buick -0.3356 4.73e-65 Make: Scion 0.2085 2.85e-25
Make: Cadillac -0.2621 1.86e-39 Make: Smart 0.0740 0.000261
Make: Chevrolet -0.3734 2.81e-81 Make: Subaru 0.0245 0.226
Make: Chrysler -0.2971 1.06e-50 Make: Suzuki 0.0179 0.378
Make: Daewoo 0.0249 0.22 Make: Tesla 0.0979 1.33e-06
Make: Dodge -0.4053 9.68e-97 Make: Toyota 0.6340 2.59e-273
Make: Eagle -0.1243 7.72e-10 Make: Volkswagen 0.2052 1.66e-24
Make: Ferrari 0.0504 0.0129 Make: Volvo 0.0953 2.51e-06

Table S13. Pearson r correlation coefficients and their associated
p-values for each car attribute between the percentage of Asian resi-
dents and each car attribute, at the zip code level.
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%White %Black %Asian
Rank Variable Pearson’s r Variable Pearson’s r Variable Pearson’s r

1 Body Type: SUV 0.3053 Make: Cadillac 0.5015 Make: Toyota 0.6340
2 Make: Jeep 0.2893 Make: Buick 0.4922 Country: Japan 0.5727
3 Make: Subaru 0.2397 Make: Mercury 0.4479 Make: Honda 0.5174
4 Price 0.2182 Body Type: Sedan 0.4421 Foreign 0.5162
5 Body Type: Wagon 0.2153 Make: Chrysler 0.4137 Make: Lexus 0.4142

84 Make: Mercury -0.2581 Foreign -0.2580 Make: Ford -0.3324
85 Year: 1995-1999 -0.2599 Body Type: Extended Cab -0.2583 Make: Buick -0.3356
86 Make: Lincoln -0.3003 Body Type: Hatchback -0.2692 Make: Chevrolet -0.3734
87 Make: Cadillac -0.3535 Country: Japan -0.2855 Make: Dodge -0.4053
88 Body Type: Sedan -0.4181 Make: Toyota -0.3335 Country: USA -0.5162

Table S14. The five car attributes that correlate most positively and
most negatively with the percentage of each race in a zip code.
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Variable Pearson’s r p-value Variable Pearson’s r p-value

Price -0.2768 ≤ 10−300 Make: Fiat 0.0165 0.00815
Cars/Image 0.3718 ≤ 10−300 Make: Fisker 0.0173 0.00543
MPG Highway 0.3307 ≤ 10−300 Make: Ford -0.1746 7.41e-176
MPG City 0.2597 ≤ 10−300 Make: Geo 0.0681 6.63e-28
Hybrid 0.0318 3.1e-07 Make: GMC -0.1675 8.16e-162
Electric 0.0347 2.35e-08 Make: Honda 0.0705 8.59e-30
Foreign 0.0743 5.93e-33 Make: Hummer -0.0587 3.72e-21
Country: England 0.1159 6.69e-78 Make: Hyundai -0.0162 0.00938
Country: Germany 0.1665 7.7e-160 Make: Infiniti 0.0772 2.08e-35
Country: Italy 0.0563 1.32e-19 Make: Isuzu 0.0369 3.12e-09
Country: Japan 0.0297 1.83e-06 Make: Jaguar 0.1180 1.09e-80
Country: South Korea -0.0150 0.0158 Make: Jeep -0.0563 1.39e-19
Country: Sweden 0.1509 1.96e-131 Make: Kia -0.0076 0.22
Country: USA -0.0743 5.93e-33 Make: Lamborghini 0.0366 4.03e-09
Body Type: Convertible 0.0144 0.0206 Make: Land Rover 0.0438 1.87e-12
Body Type: Coupe 0.1426 2.52e-117 Make: Lexus -0.0578 1.5e-20
Body Type: Crew Cab -0.4799 ≤ 10−300 Make: Lincoln 0.1387 3.71e-111
Body Type: Extended Cab -0.4266 ≤ 10−300 Make: Lotus 0.0147 0.0178
Body Type: Hatchback 0.1193 1.6e-82 Make: Maserati 0.0291 2.94e-06
Body Type: Minivan 0.0524 3.38e-17 Make: Maybach 0.0160 0.01
Body Type: Regular Cab -0.3047 ≤ 10−300 Make: Mazda 0.0801 5.49e-38
Body Type: Sedan 0.4829 ≤ 10−300 Make: Mclaren 0.0301 1.3e-06
Body Type: SUV -0.2246 1e-292 Make: Mercedes-Benz 0.0830 1.08e-40
Body Type: Van 0.1154 2.73e-77 Make: Mercury 0.1830 2.67e-193
Body Type: Wagon 0.1463 1.97e-123 Make: Mini 0.0700 2.19e-29
Year: 1990-1994 0.1396 1.89e-112 Make: Mitsubishi 0.0101 0.104
Year: 1995-1999 0.2950 ≤ 10−300 Make: Nissan 0.0212 0.000668
Year: 2000-2004 -0.1728 3.4e-172 Make: Oldsmobile 0.2250 9.64e-294
Year: 2005-2009 -0.1951 7.58e-220 Make: Panoz 0.0128 0.0392
Year: 2010-2014 -0.1651 2.71e-157 Make: Plymouth 0.1696 7.47e-166
Make: Acura 0.1032 3.93e-62 Make: Pontiac 0.2191 3.61e-278
Make: AM General -0.1182 6.02e-81 Make: Porsche 0.0089 0.153
Make: Aston Martin 0.0005 0.931 Make: Ram -0.0855 4.51e-43
Make: Audi 0.0951 6.14e-53 Make: Rolls-Royce 0.0537 6.09e-18
Make: Bentley 0.0481 1e-14 Make: Saab 0.0784 1.86e-36
Make: BMW 0.1203 8.72e-84 Make: Saturn 0.0358 8.69e-09
Make: Buick 0.2177 1.57e-274 Make: Scion -0.1093 1.66e-69
Make: Cadillac 0.1144 6.54e-76 Make: Smart 0.0141 0.0232
Make: Chevrolet -0.1842 8.44e-196 Make: Subaru 0.1414 1.72e-115
Make: Chrysler 0.1708 2.51e-168 Make: Suzuki 0.0396 1.98e-10
Make: Daewoo 0.0453 3.09e-13 Make: Tesla -0.0059 0.347
Make: Dodge -0.1010 1.43e-59 Make: Toyota -0.0545 1.97e-18
Make: Eagle 0.0776 9.26e-36 Make: Volkswagen 0.1529 8.78e-135
Make: Ferrari 0.0463 1.01e-13 Make: Volvo 0.1442 5.31e-120

Table S15. Pearson r correlation coefficients and their associated
p-values between each car attribute and %Obama. The variables
“Price”, “MPG City”, and “MPG Highway” are calculated as expected
values for each precinct, and all other variables are expressed as a
percent of all cars observed in each precinct.
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