Supporting Information

Fig S1. Linear regression of the annual mean temperature against year for the time period 1981 to 2015 at the Estacion de Biologia-Chamela in Jalisco, Mexico. Between 1981 and 2015 mean annual temperature rose ~2.4 °C. (see Methods).

Fig S2. Comparison of mean dry weight biomass of arthropods caught per day over five days of sampling in ten sticky ground traps placed in the same area of the Chamela forest for the same amount of time in July 1987 and 1988 (1) and again in August 2014. The total dry weight biomass of captured arthropods is given above each bar.

Fig. S3. Quasi-Poisson regressions of *E. coqui* counts in four of Woolbright's (2,3) study areas in the Luquillo forest. (A) Regression for the Sonadura West *E. coqui* census area near the El Verde field Station. (B) Segmented regressions of estimated *E. coqui* abundances in a study area near the El Verde field station. The figure shows the dramatic increase in *E. coqui* numbers following Hurricane Hugo which struck the Luquillo Forest on September 18, 1989. The rapid return to the pre-perturbation rate of decline suggests the ongoing influence of climate change on birth and death rates. (C) and (D) QuasiPoisson regressions on time for *E. coqui* counts for two of Woolbright's study areas in the Bisley watershed. The regression equations are given for each census and the 95% confidence intervals are shown around the best fit regression lines. Pr(Chi) is the result of a likelihood ratio Chi-square test of whether the independent variable improves the Poisson model beyond an intercept-only model. P <.05 indicates a statistically significant regression.

Fig S4. Nonparametric Theil-Sen regression of the relative decline in mist net catch rate between 1990 and 2005 as a function of the percent of a given species' diet made up of invertebrates for 7 of the most common bird species in Waide's (4) study area near El Verde. The regression was significant at P<.05. Declines in catch rates were calculated relative to the Ruddy Quail Dove, *G. montana*, a granivore that showed no decrease in abundance between 1990 and 2005. RQD=Ruddy Quail Dove (*Geotrygon montana*), PBF=Puerto Rican Bull Finch (*Loxigilla portoricensis*), PRTh= Red Legged Thrush (*Turdus plumbeus*), PRE=Puerto Rican Emerald Hummingbird (*Chlorostilbon maugaeus*), BWV=Black-whiskered Vireo (*Vireo altiloquus*), PRTa=Puerto Rican Tanager (*Nesospingus speculiferus*), PRT= Puerto Rican Tody (*Todus mexicanus*). Diet data from Reagan and Waide (5).

Fig. S5. Results of the hierarchical partitioning analyses. The bars show percent of the total deviance that each variable explains independent of the other variables. Variables with high percentages are more likely to be causal (6).

Fig. S6. Results of the cross-correlation analyses for the SOI and the abundance time series of the canopy invertebrate and the walking stick populations. See text for interpretation and discussion.

Fig. S7. The decline in total agricultural land in Puerto Rico that was subject to pesticide application between 1969 and 2012. Data from U.S. Department of Agriculture, National Agricultural Statistics Service, Census of Agriculture <u>https://www.agcensus.usda.gov/</u>.

Fig. S8. Trends and relationships for the Luquillo forest climate variables.

Fig. S9. The Southern Oscillation Index (SOI) from 1975 to 2018. Positive values (blue bars) correspond to La Nina years with below-normal air pressure at Tahiti and above-normal air pressure at Darwin, combined with ocean temperatures across the eastern tropical Pacific that are colder than average. Negative values (red bars) correspond to El Niño years with above normal air pressure at Tahiti and below-normal air pressure at Darwin, combined with ocean temperatures at Darwin, combined with ocean temperatures in the eastern tropical Pacific that are warmer than average. Major droughts in Puerto Rico (red bars along X axis) are associated with El Nino episodes, and major hurricanes (blue bars along X axis) with La Niña. Also shown are the approximate time periods over which the eruptions of El Chichon (September1982) and Mount Pinatubo (June 1991) lowered global temperatures. To add context with respect to ENSO for the various censuses analyzed in this study, the time periods during which they were conducted are shown at the top of the figure.

Table S1. Data from mark-recapture studies of *Anolis* populations conducted in the same sampling area in the Luquillo forest using the Schnabel capture-recapture method (25). Data for 1976 and 1977 from Lister (1).

Table S2. Rates of decline for rainforest anoles from Puerto Rico (1 and this study), Costa Rica (7), and Panama (8).

Table S3. Definition of the most important climate variables, as defined by the Hierarchical Partitioning analysis, that were employed as potential predictors in the univariate and multivariate quasiPoisson regressions.

Table S4. Results of the Vinod Causality analysis using the generalCorr R package (9). SO=Woolbright's Sondadura Old study area. SW = Woolbright's Sonadura West study area. The unanimity index (UI) quantifies the likelihood that either X or Y is causal. The most likely causal path for 5 of the 6 data sets is that mean maximum temperature causes declines in abundance. Given a UI slightly above 15, the causal direction for the *E. coqui* population at the Sonadura Old study area is indeterminate.

Table S5. Results of the multiple quasiPoisson regression analyses.

Dataset S1 – Luquillo sweep net data 1

Dataset S2 – Luquillo sweep net data 2

Dataset S3 – Luquillo trap data

Dataset S4 – Chamela traps

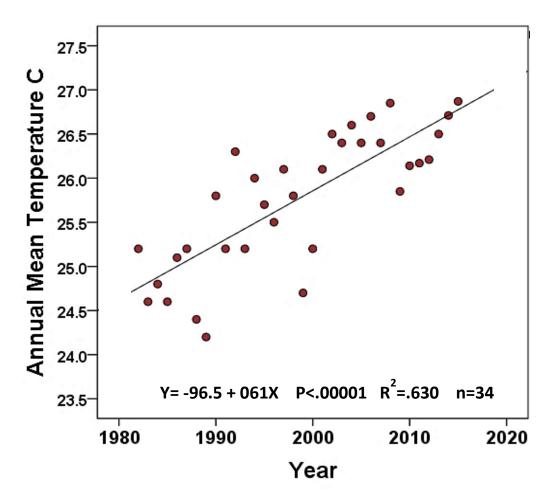


Fig. S1

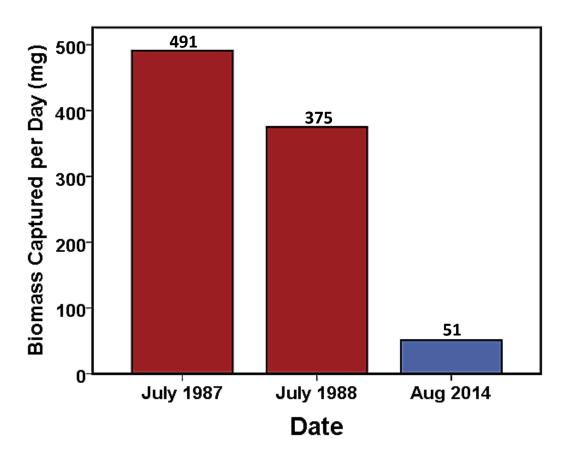


Fig S2.

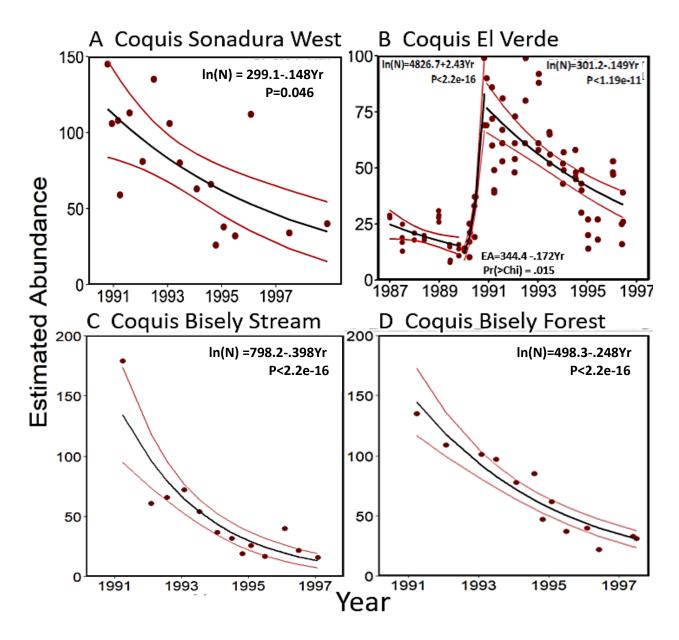


Fig S3.

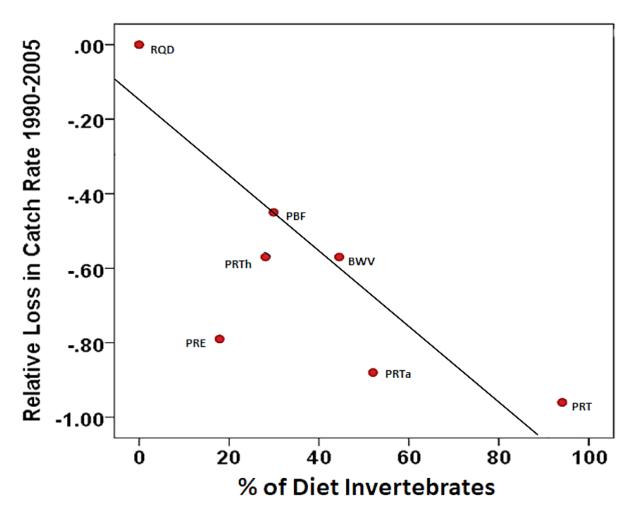
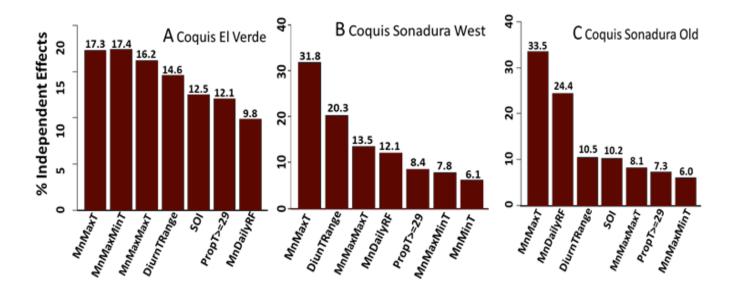
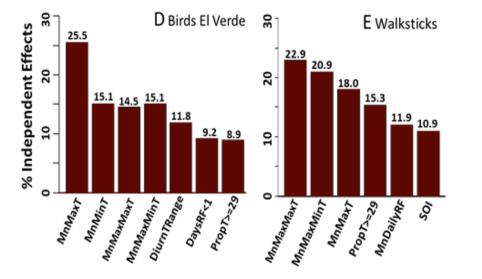




Fig. S4.

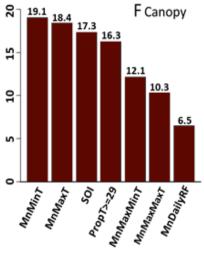


Fig. S5

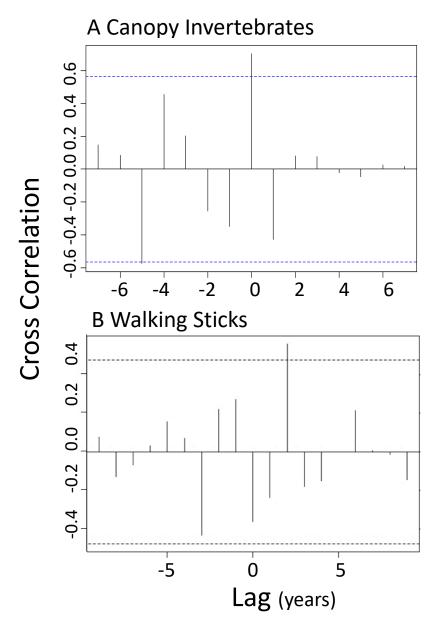


Fig. S6

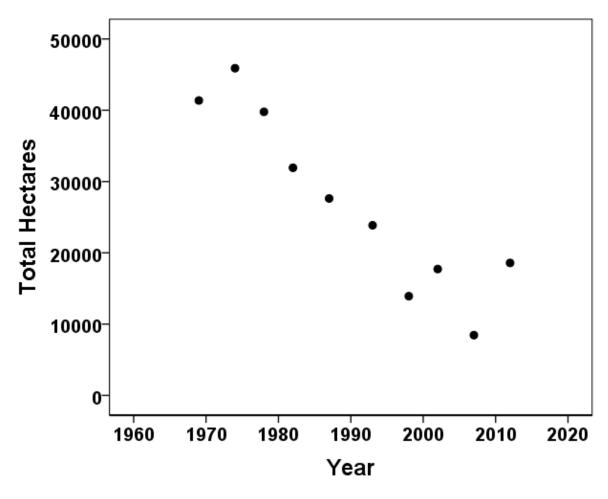


Fig. S7.

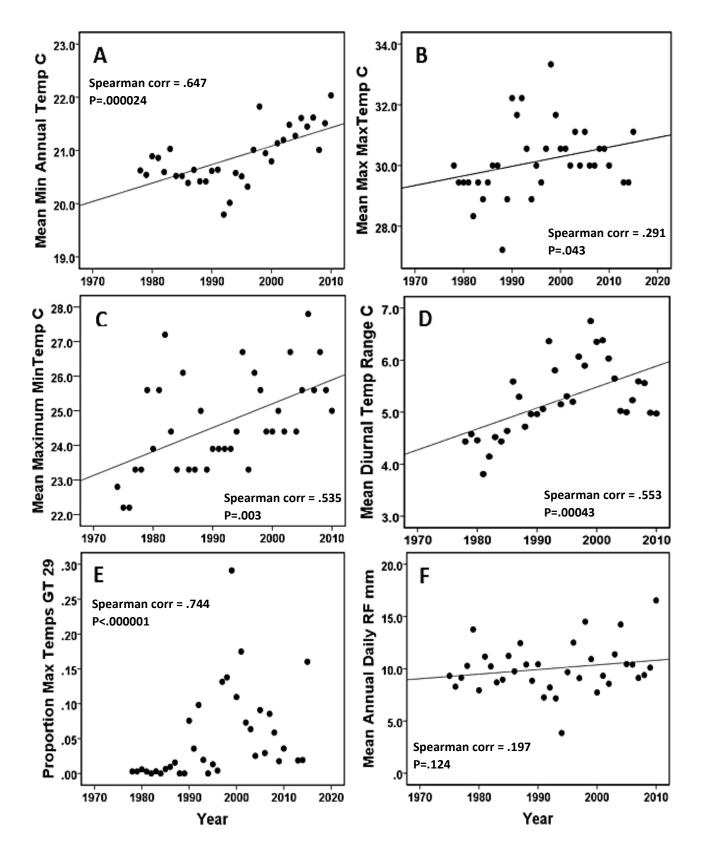


Fig. S8

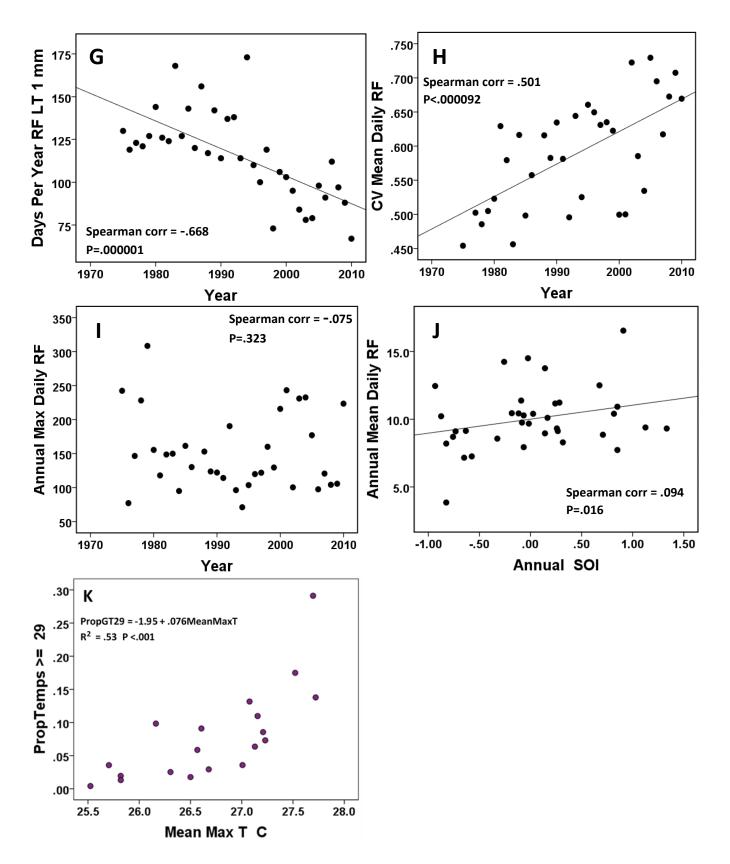


Fig. S8 continued

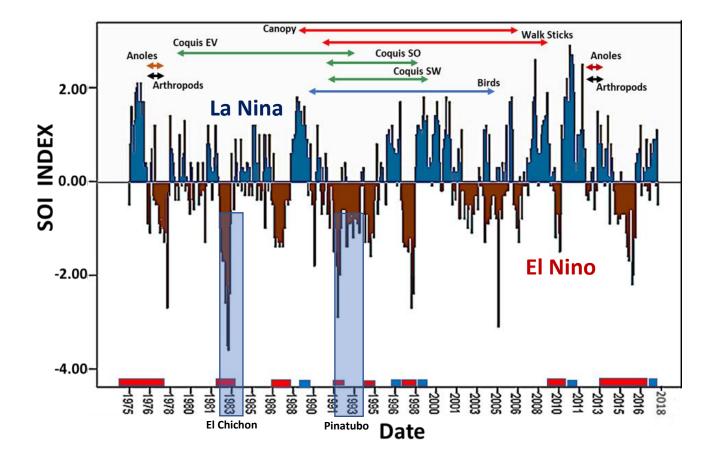


Fig. S9

Table S1

					Estimated Anole
Date	Species	Sex	Estimated N	95% CI	Biomass
					(g per quadrat)
Jul 1976	A. gundlachi	Adult male	40	38-42	192
		Adult female	42	34-56	100
		Juveniles	0	-	0
	A. evermanni	Adult male	23	20-26	80
		Adult female	24	20-30	56
		Juveniles	0		0
	A. stratulus	Adult male	4	-	10
		Adult female	4	-	7
		Juveniles	0	-	0
	TOTALS		137		445 g
Jan 1977	A. gundlachi	Adult male	36	28-45	189
		Adult female	33	24-50	63
		Juveniles	25		21
	A. evermanni	Adult male	8	6-10	36
		Adult female	10	9-12	19
		Juveniles	18	-	13
	A. stratulus	Adult male	4	-	10
		Adult female	4	-	7
		Juveniles	0	-	0
	TOTALS		138		357 g
					MEAN = 401 g
Aug 2011	A. gundlachi	Adult male	19	17-21	152
		Adult female	42	40-44	117
		Juveniles	0	-	0
	A. evermanni	Adult male	0	-	-
		Adult female	2	-	15
		Juveniles	0	-	0
	A. stratulus	Adult male	0	-	0
		Adult female	0	-	0
		Juveniles	0	-	0
	TOTALS				284 g
Jan 2012	A. gundlachi	Adult male	15	14-16	131
		Adult female	40	37-43	105
		Juveniles	5	-	4
	A. evermanni	Adult male	1	-	3.8
		Adult female	7	-	27
		Juveniles	0	-	0
	A. stratulus	Adult male	0	-	0
		Adult female	0	-	0
		Juveniles	0	-	0
	TOTALS		68		271 g
					MEAN = 277 g

Table	S2
-------	-----------

Source	Species	Location	Dates	Time Interval	Total Change	% per yr	Proposed Drivers
Lister and Garcia	A. gundlachi	Luquillo, PR	July 1976 - Aug 2012	34 yrs	-33%	-1.00	Arthropod food supply
Lister and Garcia	A. evermanni	Luquillo PR	July 1976 - Aug 2012	34 yrs	-86%	-2.53	Arthropod food supply
Lister and Garcia	A. stratulus	Luquillo PR	July 1977 - Aug 2011	34 yrs	-100%	-	Arthropod food supply
Lister and Garcia	A. cristatellus	Luquillo PR	July 1976 - Aug 2012	33 yrs	-100%	-	Arthropod food supply
Whitfield et al, 2007	A. capito	La Selva, CR	1970-2005	35 yrs	-23%	73	Decline in litter
Whitfield et al, 2007	A. humilis	La Selva, CR	1970-2005	35 yrs	-78%	-4.44	Decline in litter
Whitfield et al, 2007	A. apletophallus	La Selva, CR	1970-2005	35 yrs	-71%	-3.05	Decline in litter
Pounds et al, 1999	A. tropidolepis	Monte Verde, CR	Wet season 1983-1994	11 yrs	-100%	-10.80	Mist frequency
Pounds et al, 1999	A. altae	Monte Verde, CR	Wet season 1983-1996	13 yrs	-100%	-7.23	Mist frequency
Stapley et al, 2015	A. apletophallus	Barro Colorado, PAN	Dec 1971 - Dec 2011	40 yrs	-71%	-1.78	ENSO, increased min temp

Table	S3
-------	-----------

Index	Definition	Units	Justification
MnMaxT	Mean of maximum daily temps	°C	Rising temperatures are affecting all life in the Biosphere
MnMinT	Mean of minimum daily temps	°C	Minimum (night time) temperatures are increasing faster than day time temperatures. Higher nocturnal temperatures are known to have a significant negative impact on the abundances and population growth rates of tropical vertebrates.
MnMaxMaxT	Mean of maxima of daily maximum temps	°C	Extreme day time temperatures can have a wide range of nonlinear, negative effects on the fitness and abundances of plants and animals
MnMaxMinT	Mean of the maxima of daily minimum temps	°C	Given the rapid elevation in night time temperatures, extremes of nocturnal temperatures are becoming increasingly important to understanding the biological effects of climate warming.
PropT>=29	Proportion of days per year when daily temperature exceeds 29 °C	-	A measure of increases in extreme temperatures, and, indirectly, the duration that plants and animals are exposed to these extremes.
DiurnTRange	Mean diurnal temp range	°C	A measure of the quotidian variability in temperatures that animals and plants are exposed to. Affects metabolic demands, energy needs, and sensitivity to climate change. Diurnal temperature range has been decreasing worldwide since the 1950s
MnDailyRF	Annual mean daily rainfall	mm/day	Like temperature, rainfall affects all living things starting with plant productivity. Invertebrates and amphibians are especially sensitive to variations in precipitation and moisture.
DaysRF<1	N days per year when total rainfall is less than 1 mm	days	Consecutive dry days. Correlated with other measure of the dryness of a given habitat including reduced humidity, soil moisture and, over the long term, severity of drought. Known to be increasing over large areas of Central America.
SOI	The Southern Oscillation Index is a measure of the intensity of El Niño and La Niña events in the Pacific Ocean. The SOI is calculated from the normalized monthly mean sea level pressure anomalies at Tahiti and Darwin. The anomalies are calculated as departures from the 1951 to 1980 based period.	-	Fluctuations in the SOI are correlated with weather extremes including hurricanes, drought and heat waves that can have major, long lasting impacts on populations

Table S4

Group	х	Y	Covariate	UI	Causation
<i>E. coquis</i> El Verde	MeanMaxT	Abundance	MnDailyRF	100	X → Y
E. coquis SW	MeanMaxT	Abundance	MnDailyRF	100	X → Y
E. coquis SO	MeanMaxT*	Abundance	MnDailyRF	15.7	X↔Y
Walking Sticks L. portoricensis	MeanMaxT	Abundance	None	100	X → Y
Canopy Insects	MeanMaxT	Abundance	MnDailyRF	100	X → Y
Birds El Verde	MeanMaxT	Abundance	MnDailyRF	100	X → Y

Table S5

Population	Model	Residual Deviance and Significance			
<i>E. coquis</i> El Verde	ln(N) = 21.365MnMaxT - 16.21PropGt29 + .44SOIPrevYr	Df Deviance Resid. Df Resid. Dev Pr(>Chi) NULL 14 709.95 Temp 1 319.42 13 390.54 9.571e-05 PropTGT29 1 75.53 12 315.01 0.05783 SOIPrevYr 1 79.95 11 235.06 0.05096			
<i>E. coquis</i> Sonadura West	ln(N) = 20.765MnMaxT + 8.02PropGt29	Df Deviance Resid. Df Resid. Dev Pr(>Chi) NULL 16 306.40 Temp 1 80.980 15 225.42 0.003004 PropTGT29 1 97.161 14 128.26 0.001153			
<i>E. coquis</i> Sonadura Old	ln(N) = 12.432MnMaxT + 7.17PropGt29	Df Deviance Resid. Df Resid. Dev Pr(>Chi) NULL 15 225.58 Temp 1 41.524 14 184.05 0.031121 PropTGT29 1 66.153 13 117.90 0.006515			
Walking Sticks L. portoricensis	In(N) = 20.762MnMaxT58SOIYr + 4.0PropGt29	Df Deviance Resid. Df Resid. Dev Pr(>Chi) NULL 18 674.83 SOIYr 1 250.234 17 424.59 2.354e-05 Temp 1 90.660 16 333.93 0.01092 PropGT29 1 92.228 15 241.70 0.01026			
Birds	ln(N) = 12.1329MnMaxT	Df Deviance Resid. Df Resid. Dev Pr(>Chi NULL 13 203.25 BirdFactors\$MaxMnTemp 1 57.561 12 145.69 0.0267			

SI References

- 1. Lister BC (1981) Seasonal niche relationships of rainforest anoles. *Ecology* 62: 1548–1560.
- 2. Woolbright L (1991) Impact of Hurricane Hugo on forest frogs in Puerto Rico. *Biotropica* 23:462–467.
- 3. Woolbright L (1996) Disturbance influences long-term population patterns in the Puerto Rican frog, *Eleutherodactylus coqui* (Anura: Leptodactylidae). *Biotropica* 28:493–501.
- 4. Waide R (1991) The effect of Hurricane Hugo on bird populations in the Luquillo Experimental Forest, Puerto Rico. *Biotropica* 23:475–480.
- 5. Reagan D, Waide R, eds (1996) *The Food Web of a Tropical Rain Forest* (Univ of Chicago Press, Chicago).
- 6. Mac Nally R (1996) Hierarchical partitioning as an interpretative tool in multivariate inference. *Aust J Ecol* 21:224–228.
- 7. Pounds J, Fogden M, Campbell J (1999) Biological response to climate change on a tropical mountain. *Nature* 398:611–615.
- 8. Stapley J, Garcia M, Andrews RM (2015) Long-term data reveal a population decline of the tropical lizard *Anolis apletophallus*, and a negative effect of El Niño years on population growth rate. *PLoS One* 10:e0115450.
- Vinod HD (2017) Generalized correlation and kernel causality using R package generalCorr. Available at <u>https://cran.r</u> project.org/web/packages/generalCorr/vignettes/g Q:26 eneralCorrvignette.pdf. Accessed May 2018.