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Abstract

The growing competition and ‘‘publish or perish’’ culture in academia might conflict with the objectivity and integrity of
research, because it forces scientists to produce ‘‘publishable’’ results at all costs. Papers are less likely to be published and
to be cited if they report ‘‘negative’’ results (results that fail to support the tested hypothesis). Therefore, if publication
pressures increase scientific bias, the frequency of ‘‘positive’’ results in the literature should be higher in the more
competitive and ‘‘productive’’ academic environments. This study verified this hypothesis by measuring the frequency of
positive results in a large random sample of papers with a corresponding author based in the US. Across all disciplines,
papers were more likely to support a tested hypothesis if their corresponding authors were working in states that, according
to NSF data, produced more academic papers per capita. The size of this effect increased when controlling for state’s per
capita R&D expenditure and for study characteristics that previous research showed to correlate with the frequency of
positive results, including discipline and methodology. Although the confounding effect of institutions’ prestige could not
be excluded (researchers in the more productive universities could be the most clever and successful in their experiments),
these results support the hypothesis that competitive academic environments increase not only scientists’ productivity but
also their bias. The same phenomenon might be observed in other countries where academic competition and pressures to
publish are high.
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Introduction

The objectivity and integrity of contemporary science faces

many threats. A cause of particular concern is the growing

competition for research funding and academic positions, which,

combined with an increasing use of bibliometric parameters to

evaluate careers (e.g. number of publications and the impact factor

of the journals they appeared in), pressures scientists into

continuously producing ‘‘publishable’’ results [1].

Competition is encouraged in scientifically advanced countries

because it increases the efficiency and productivity of researchers

[2]. The flip side of the coin, however, is that it might conflict with

their objectivity and integrity, because the success of a scientific

paper partly depends on its outcome. In many fields of research,

papers are more likely to be published [3,4,5,6], to be cited by

colleagues [7,8,9] and to be accepted by high-profile journals [10]

if they report results that are ‘‘positive’’ – term which in this paper

will indicate all results that support the experimental hypothesis

against an alternative or a ‘‘null’’ hypothesis of no effect, using or

not using tests of statistical significance.

Words like ‘‘positive’’, ‘‘significant’’, ‘‘negative’’ or ‘‘null’’ are

common scientific jargon, but are obviously misleading, because all

results are equally relevant to science, as long as they have been

produced by sound logic and methods [11,12]. Yet, literature

surveys and meta-analyses have extensively documented an excess

of positive and/or statistically significant results in fields and

subfields of, for example, biomedicine [13], biology [14], ecology

and evolution [15], psychology [16], economics [17], sociology [18].

Many factors contribute to this publication bias against

negative results, which is rooted in the psychology and sociology

of science. Like all human beings, scientists are confirmation-

biased (i.e. tend to select information that supports their

hypotheses about the world) [19,20,21], and they are far from

indifferent to the outcome of their own research: positive results

make them happy and negative ones disappointed [22]. This bias

is likely to be reinforced by a positive feedback from the scientific

community. Since papers reporting positive results attract more

interest and are cited more often, journal editors and peer

reviewers might tend to favour them, which will further increase

the desirability of a positive outcome to researchers, particularly if

their careers are evaluated by counting the number of papers

listed in their CVs and the impact factor of the journals they are

published in.

Confronted with a ‘‘negative’’ result, therefore, a scientist might

be tempted to either not spend time publishing it (what is often

called the ‘‘file-drawer effect’’, because negative papers are

imagined to lie in scientists’ drawers) or to turn it somehow into

a positive result. This can be done by re-formulating the

hypothesis (sometimes referred to as HARKing: Hypothesizing

After the Results are Known [23]), by selecting the results to be

published [24], by tweaking data or analyses to ‘‘improve’’ the

outcome, or by willingly and consciously falsifying them [25]. Data
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fabrication and falsification are probably rare, but other

questionable research practices might be relatively common [26].

Quantitative studies have repeatedly shown that financial

interests can influence the outcome of biomedical research

[27,28] but they appear to have neglected the much more

widespread conflict of interest created by scientists’ need to

publish. Yet, fears that the professionalization of research might

compromise its objectivity and integrity had been expressed

already in the 19th century [29]. Since then, the competitiveness

and precariousness of scientific careers have increased [30], and

evidence that this might encourage misconduct has accumulated.

Scientists in focus groups suggested that the need to compete in

academia is a threat to scientific integrity [1], and those guilty of

scientific misconduct often invoke excessive pressures to produce

as a partial justification for their actions [31]. Surveys suggest that

competitive research environments decrease the likelihood to

follow scientific ideals [32] and increase the likelihood to witness

scientific misconduct [33] (but see [34]). However, no direct,

quantitative study has verified the connection between pressures to

publish and bias in the scientific literature, so the existence and

gravity of the problem are still a matter of speculation and debate

[35].

To verify this hypothesis, this study analysed a random sample

of papers published between 2000 and 2007 that had a

corresponding author based in the US. These papers, published

in all disciplines, declared to have tested a hypothesis, and it was

determined whether they concluded to have found a ‘‘positive’’

(full or partial) or a ‘‘negative’’ support for the tested hypothesis.

Using data compiled by the National Science Foundation, the

proportion of ‘‘positive’’ results was then regressed against a sheer

measure of academic productivity: the number of articles

published per-capita (i.e. per doctorate holder in academia) in

each US state, controlling for the effects of per-capita research

expenditure. NSF data provides an accurate proxy of a state’s

academic productivity, because it controls for multiple authorship

by counting papers fractionally. Since the probability for a paper

to report a positive result depends significantly on its methodology,

on whether it tests one or more hypotheses, on the discipline it

belongs to and particularly on whether the discipline is pure or

applied [36], these confounding effects were controlled for in the

regression models.

Results

A total of 1316 papers were included in the analysis. All US

states and the federal district were represented in the sample,

except Delaware. The number of papers per state varied between

1 and 150 (mean: 26.3264.16SE), and the percentage of positive

results between 25% and 100% (mean: 82.38615.15STDV,

Figure 1). The number of papers from each state in the sample

was almost perfectly correlated with the total number of papers

that each state had published in 2003 according to NSF (Pearson’s

r = 0.968, N = 50, P,0.001), as well as any other year for which

data was available (i.e. 1997, 2001 and 2005, r$0.963 and

p,0.001 in all cases). This shows the sample to be highly

representative of academic publication patterns in the US.

The probability of papers to support the tested hypothesis

increased significantly with the per capita academic productivity

of the state of the corresponding author (b = 1.38360.682,

Wald test = 4.108, df = 1, p = 0.043, Odds-Ratio (95%CI) = 3.988

(1.047–15.193), Figure 2). The statistical significance of per capita

academic productivity increased when controlling for the per

capita R&D expenditure, which tended to have a negative

effect instead (respectively, b = 2.64460.948, Wald = 7.779,

p = 0.005, OR(95%CI) = 14.073(2.195–90.241), and b = 25.9936

3.185, Wald = 3.539, p = 0.06, OR(95%CI) = 0.002(0–1.285), see

Figure 3).

The effect of per capita academic productivity remained highly

significant when controlling for expenditure and for characteristics

of study: broad methodological category, papers testing one vs.

multiple hypotheses, and pure vs. applied discipline (Table 1,

Nagelkerke R2 = 0.051). Similar results were obtained when

controlling for the effect of discipline instead of methodology

(Table 2, Nagelkerke R2 = 0.065). Adding an interaction term of

discipline by academic productivity did not improve the model

significantly overall (Wald = 20.424, df = 19, p = 0.369), although

contrasting each discipline’s interaction term with that of Space

Science showed significantly positive interaction effects for

Figure 1. Percentage of positive results by US state. Percentage and 95% logit-derived confidence interval of papers published between 2000
and 2007 that supported a tested hypothesis, classified by the corresponding author’s US state (sample size for each state is in parentheses). States
are indicated by their official USPS abbreviations: AL-Alabama, AK-Alaska, AZ-Arizona, AR-Arkansas, CA-California, CO-Colorado, CT-Connecticut, DC-
District of Columbia, FL-Florida, GA-Georgia, HI-Hawaii, ID-Idaho, IL-Illinois, IN-Indiana, IA-Iowa, KS-Kansas, KY-Kentucky, LA-Louisiana, ME-Maine, MD-
Maryland, MA-Massachusetts, MI-Michigan, MN-Minnesota, MS-Mississippi, MO-Missouri, MT-Montana, NE-Nebraska, NV-Nevada, NH-New Hampshire,
NJ-New Jersey, NM-New Mexico, NY-New York, NC-North Carolina, ND-North Dakota, OH-Ohio, OK-Oklahoma, OR-Oregon, PA-Pennsylvania, RI-Rhode
Island, SC-South Carolina, SD-South Dakota, TN-Tennessee, TX-Texas, UT-Utah, VT-Vermont, VA-Virginia, WA-Washington, WV-West Virginia, WI-
Wisconsin, WY-Wyoming. All US states were represented in the sample except Delaware.
doi:10.1371/journal.pone.0010271.g001
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Neuroscience & Behaviour (b = 8.09864.122, Wald = 3.860,

p = 0.049) and Pharmacology and Toxicology (b = 11.2016

4.661, Wald = 5.775, p = 0.016).

The proportion of papers published between 2000 and 2007

that supported the tested hypothesis was completely uncorrelated

with the total (i.e. non per capita) number of doctorate holders,

total number of papers and total R&D expenditure (b = 060 and

p$0.223 for all three cases). Controlling for any of these

parameters did not alter the results of the regression in any

meaningful way.

Sensitivity analyses
The analyses were run using 2003 data from the Science and

Engineering Indicators 2006 report [37], because this year had the

most complete data series (all parameters in the report had been

calculated for that year), and because it fell almost in the middle of

Figure 2. ‘‘Positive’’ results by per-capita publication rate. Percentage of papers supporting a tested hypothesis in each US state plotted
against the state’s academic article output per science and engineering doctorate holder in academia in 2003 (NSF data). Papers were published
between 2000 and 2007 and classified by the US state of the corresponding author. US states are indicated by official USPS abbreviations. For
abbreviations legend, see Figure 1.
doi:10.1371/journal.pone.0010271.g002

Figure 3. ‘‘Positive’’ results by per-capita R&D expenditure in academia. Percentage of papers supporting a tested hypothesis in each US
state plotted against the state’s academic R&D expenditure per science and engineering doctorate holder in academia in 2003 (NSF data, in million
USD). Papers were published between 2000 and 2007 and classified by the US state of the corresponding author. US states are indicated by official
USPS abbreviations. For abbreviations legend, see Figure 1.
doi:10.1371/journal.pone.0010271.g003
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the period 2000–2007. However, state data was also available

from the 2004 and 2008 reports, and for the years 2000–2001 and

2005–2006 (year depeding on parameter). Some discrepancies

between reports were noted in the data on some states and years

(in particular, but not exclusively, for DC). However, similar

results were obtained using different data sets or combinations of

them. For example, the state productivity averaged over the 2000–

2001 and 2005–2006 data series and excluding the 2003 series was

still a statistically significant predictor, controlling for expenditure

(Per capita number of papers: b = 2.49661.100, Wald = 5.145,

p = 0.023; per capita R&D: b = 26.62863.742, Wald = 3.138,

p = 0.076).

Discussion

In a random sample of 1316 papers that declared to have

‘‘tested a hypothesis’’ in all disciplines, outcomes could be

significantly predicted by knowing the addresses of the corre-

sponding authors: those based in US states where researchers

publish more papers per capita were significantly more likely to

report positive results, independently of their discipline, method-

ology and research expenditure. The probability for a study to

yield a support for the tested hypothesis depends on several

research-specific factors, primarily on whether the hypothesis

tested is actually true and how much statistical power is available

to reject the null hypothesis [38]. However, the geographical

origin of the corresponding author should not, in theory, be

relevant, nor should parameters measuring the sheer quantity of

publications per capita. Although, as discussed below, not all

confounding factors in the study could be controlled for, these

results support the hypothesis that competitive academic environ-

ments increase not only the productivity of researchers, but also

their bias against ‘‘negative’’ results.

All main sources of sampling and methodological bias in this

study were controlled for. The number of papers from each state

in the sample was almost perfectly correlated with the actual

number of papers that each state produced in any given year,

which confirms that the sampling of papers was completely

randomised with respect to address (as well as any other study

characteristic including the particular hypothesis tested and the

methods employed), and therefore that the sample was highly

representative of the US research panorama. The total number of

Table 1. Logistic regression slope, standard error, Wald test
with statistical significance, odds ratio and 95% confidence
interval of the probability for a paper to report a positive
result, depending on the following study characteristics: per
capita academic productivity of US state of corresponding
author, per capita R&D academic expenditure of US state of
corresponding author, papers testing more than one
hypothesis (only the first of which was considered in this
study), papers published in pure as opposed to applied
disciplines, and methodological category of paper.

Predictor B SE Wald df Sig. OR 95%CI OR

Papers per capita 2.586 0.961 7.235 1 0.007 13.275 2.017–87.368

R&D per capita 25.603 3.248 2.977 1 0.084 0.004 0–2.142

Multiple hypotheses 20.839 0.318 6.932 1 0.008 0.432 0.232–0.807

Pure-applied discipline 0.314 0.185 2.886 1 0.089 1.368 0.953–1.965

Methodological
category (all)

25.002 4 ,0.001

Biological, Ph/Ch 0.872 0.226 14.850 1 ,0.001 2.393 1.535–3.729

Beh/Soc+mixed,
non-human

0.465 0.330 1.981 1 0.159 1.592 0.833–3.040

Beh/Soc+mixed,
human

1.154 0.285 16.457 1 ,0.001 3.172 1.816–5.539

Other methodology 0.080 0.360 0.050 1 0.823 1.084 0.535–2.196

Constant 0.244 0.492 0.245 1 0.621 1.276

Methodological category (see methods for details) was tested for overall effect,
then each category was contrasted by indicator contrast to physical/chemical
studies on non-biological material.
doi:10.1371/journal.pone.0010271.t001

Table 2. Logistic regression slope, standard error, Wald test
with statistical significance, odds ratio and 95% confidence
interval of the probability for a paper to report a positive
result, depending on the following study characteristics: per
capita academic productivity of US state of corresponding
author, per capita R&D academic expenditure of US state of
corresponding author, papers testing more than one
hypothesis (only the first of which was included in the study),
and discipline of journal in which the paper was published (as
classified by the Essential Science Indicators database, see
methods).

Variable B SE Wald df Sig. OR 95%CI OR

Papers per capita 2.509 0.977 6.590 1 0.010 12.292 1.810–83.479

R&D per capita 25.237 3.263 2.576 1 0.109 0.005 0–3.185

Multiple hypotheses 20.532 0.344 2.399 1 0.121 0.587 0.299–1.152

Discipline (all) 38.752 19 0.005

Geosciences 20.050 0.426 0.014 1 0.906 0.951 0.413–2.192

Environment/Ecology 0.208 0.441 0.223 1 0.637 1.231 0.519–2.920

Plant and Animal
Sciences

0.786 0.434 3.284 1 0.070 2.195 0.938–5.135

Computer Science 0.487 0.565 .743 1 0.389 1.627 0.538–4.923

Agricultural Sciences 0.387 0.502 0.596 1 0.440 1.473 0.551–3.939

Physics 0.911 0.577 2.497 1 0.114 2.487 0.803–7.702

Neuroscience &
Behaviour

1.139 0.462 6.067 1 0.014 3.124 1.262–7.734

Microbiology 1.163 0.453 6.586 1 0.010 3.198 1.316–7.772

Chemistry 0.781 0.520 2.252 1 0.133 2.183 0.787–6.052

Social Sciences,
General

0.917 0.430 4.549 1 0.033 2.503 1.077–5.814

Immunology 1.079 0.463 5.439 1 0.020 2.941 1.188–7.282

Engineering 1.153 0.573 4.048 1 0.044 3.166 1.030–9.731

Mol. Biology &
Genetics

0.684 0.447 2.346 1 0.126 1.982 0.826–4.757

Economics &
Business

0.952 0.487 3.825 1 0.05 2.591 0.998–6.729

Biology &
Biochemistry

0.956 0.481 3.948 1 0.047 2.602 1.013–6.683

Clinical Medicine 1.586 0.531 8.937 1 0.003 4.885 1.727–13.819

Pharm. & Toxicology 1.581 0.508 9.680 1 0.002 4.859 1.795–13.152

Materials Science 1.581 0.565 7.825 1 0.005 4.861 1.605–14.720

Psychiatry/
Psychology

1.699 0.563 9.095 1 0.003 5.468 1.813–16.497

Constant 0.147 0.583 0.064 1 0.801 1.159

Disciplines were tested for overall effect, then each was contrasted by indicator
contrast to Space Science.
doi:10.1371/journal.pone.0010271.t002
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papers, total R&D and total number of doctorate holders were

completely uncorrelated to the proportion of positive results,

ruling out the possibility that different frequencies of positive

results between states are due to sampling effects. Although the

analyses were all conducted by one author, expectancy biases can

be excluded, because the classification of papers in positive and

negative was completely blind to the corresponding address in the

paper, and the US states’ data were obtained by an independent

source (NSF). We can also exclude that the association between

productivity and positive results was an artifact of the effects of

methodologies and disciplines of papers (which are elsewhere

shown to be significant predictors of positive results [36]), because

controlling for these factors increased the size and statistical

significance of the regression, suggesting that the effect is truly

cross-disciplinary. In sum, these results are likely to represent a

genuine pattern characterising academic research in the US.

An unavoidable confounding factor in this study is the quality

and prestige of academic institutions, which is intrinsically linked

to the productivity of their resident researchers. Indeed, official

rankings of universities often include parameters measuring

publication rates [39] (although the validity of such rankings is

controversial [40,41]). Therefore, it could be argued that the

more productive states are also the ones hosting the ‘‘best’’

universities, which provide better academic structures (laborato-

ries, libraries, etc…) and more advanced and stimulating

intellectual environments. This could make scientists better at

picking up the right hypotheses and more successful in testing

them, increasing their chances to obtain true positive results.

Separating this quality-of-institution effect from that of bias

induced by pressures to publish is difficult, because the two factors

are strictly linked: the best universities are also the most

competitive, and thus presumably the ones where pressures to

produce are highest.

However, the quality-of-institution effect is unlikely to fully

explain the findings of this study for at least two reasons. First,

because if structures and resources are really important, then

positive results should also tend to increase where more R&D

expenditure is available, but a negative (though non statistically

significant) trend was observed instead. Second, because the

variability in frequency of positive results between states is too high

to be reasonably explained by the quality factor alone. At one

extreme, states yielded as few as 1 in 4 papers that supported the

tested hypothesis, at the other extreme, numerous states reported

between 95% and 100% positive results, including academically

productive ones like Michigan (N = 54 papers in this sample), Ohio

(N = 47), District of Columbia (N = 18) and Nebraska (N = 13). In

absence of bias of any kind, this would mean that corresponding

authors in these states almost never failed to find a support for the

hypotheses they tested. But negative results are virtually inevitable,

unless all the hypotheses tested were true, experiments were

designed and conducted perfectly, and the statistical power

available were always 100% – which it rarely is, and is usually

much lower [42,43,44,45,46].

As a matter of fact, the prestige of institutions could be expected

to have the opposite influence on published results, in analogy with

what has been observed by comparing countries. In the

biomedical literature, the statistical significance of results tends

to be lower in papers from high-income countries, which suggests

that journal editors tend to reject papers from low-income

countries unless they have particularly ‘‘good’’ results [47]. If

there were a similar editorial bias favouring highly prestigious

universities in the US – and some studies suggest that there is

[9,48] – then the more productive states (prestigious institutions)

should be allowed to publish more negative results.

A possibility that needs to be considered in all regression

analyses is whether the cause-effect relationship could be reversed:

could some states be more productive precisely because their

researchers tend to do many cheap and non-explorative studies

(i.e. many simple experiments that test relatively trivial hypoth-

eses)? This appears unlikely, because it would contradict the

observation that the most productive institutions are also the more

prestigious, and therefore the ones where the most important

research tends to be done.

What happened to the missing negative results? As explained in

the Introduction, presumably they either went completely

unpublished or were somehow turned into positive through

selective reporting, post-hoc re-interpretation, and alteration of

methods, analyses and data. The relative frequency of these

behaviours remains to be established, but the simple non-

publication of results is unlikely to be the only explanation. If it

were, then we should have to assume that authors in the more

productive states are even more productive than they appear, but

wastefully do not publish many negative results they get.

Since positive results in this study are estimated using what is

declared in the papers, we cannot exclude the possibility that

authors in more productive states simply tend to write the sentence

‘‘test the hypothesis’’ more often when they get positive results.

However, it would be problematic to explain why this should be

the case and, if it were, then we would still have to understand if

and how negative results are published. Ultimately, such an

association of word usage with socio-economic parameters would

still suggest that publication pressures have some measurable effect

on how research is conducted and/or presented.

Selective reporting, reinterpreting and altering results are

commonly considered ‘‘questionable research practices’’: behav-

iours that might or might not represent falsification of results,

depending on whether they express an intention to deceive. There

is no doubt that negative results produced by a methodological

flaw should either be corrected or not be published at all, and it is

likely that many scientists select or manipulate their negative

results because they sincerely think their experiments went wrong

somewhere – maybe the sample was too small or too heteroge-

neous, some measurements were inaccurate and should be

discarded, the hypothesis should be reformulated, etc… However,

in most circumstances this might be nothing more than a ‘‘gut

feeling’’ [49]. Moreover, positive results should be treated with the

same scrutiny and rigour applied to negative ones, but with all

likelihood they are not. This latter form of neglect is probably one

of the main sources of bias in science.

Adding an interaction term of discipline by productivity did not

increase the accuracy of the model significantly. Although we are

currently unable to measure the statistical power of interaction

terms in complex logistic regression models, the lack of significance

suggests that large disciplinary differences in the effect of

publication pressures are unlikely. Interestingly, however, some

interdisciplinary variability was observed: Pharmacology and

Toxicology, and Neuroscience and Behaviour had a significantly

stronger association between productivity and positive results

compared to Space Science. Of course, since we had 20 disciplines

in the model, the significance of these two terms could be due to

chance alone. However, we cannot exclude that a study with

higher statistical power could confirm this result and reveal other

small, but nonetheless interesting differences between fields.

This study focused on the United States primarily because they

are one of the most scientifically productive countries, and are

academically diversified but linguistically and culturally rather

homogeneous, which eliminated the confounding effect of editorial

biases against particular countries, cultures or languages. More-

Pressures and Scientists’ Bias
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over, the research output and expenditure of all US states are

recorded and reported by NSF periodically and with great

accuracy, yielding a reliable dataset. Academic competition might

be particularly high in US universities [1], but is surely not unique

to them. Therefore, the detrimental effects of the publish-or-perish

culture could be manifest in other countries around the world.

Materials and Methods

The sample of papers used in this study was part of a larger

sample used to compare bias between disciplines [36]. Papers

within this latter were obtained with the following method. The

sentence ‘‘test* the hypothes*’’ was used to search all 10837

journals in the Essential Science Indicators database, which

classifies journals univocally in 22 disciplines. Only papers

published between 2000 and 2007 were sampled. When the

number of papers retrieved from one discipline exceeded 150,

papers were selected using a random number generator. In one

discipline, Plant and Animal Sciences, an additional 50 papers

were analysed, in order to increase the statistical power of

comparisons involving behavioural studies on non-humans (see

below for details on methodological categories). By examining the

abstract and/or full-text, it was determined whether the authors of

each paper had concluded to have found a positive (full or partial)

or negative (null or negative) support. If more than one hypothesis

was being tested, only the first one to appear in the text was

considered. We excluded meeting abstracts and papers that either

did not test a hypothesis or for which sufficient information to

determine the outcome was lacking.

All data was extracted by the author. An untrained assistant

who was given basic written instructions (similar to the paragraph

above, plus a few explanatory examples) scored papers the same

way as the author in 18 out of 20 cases, and picked up exactly the

same sentences for hypothesis and conclusions in all but three

cases. The discrepancies were easily explained, showing that the

procedure is objective and replicable.

To identify methodological categories, the outcome of each

paper was classified according to a set of binary variables: 1-

outcome measured on biological material; 2- outcome measured

on human material; 3-outcome exclusively behavioural (measures

of behaviours and interactions between individuals, which in

studies on people included surveys, interviews and social and

economic data); 4-outcome exclusively non-behavioural (physical,

chemical and other measurable parameters including weight,

height, death, presence/absence, number of individuals, etc…).

Biological studies in vitro for which the human/non-human

classification was uncertain were classified as non-human.

Different combinations of these variables identified mutually

exclusive methodological categories: Physical/Chemical (1-N,

2-N, 3-N, 4-Y); Biological, Non-Behavioural (1-Y, 2-Y/N, 3-N,

4-Y); Behavioural/Social (1-Y, 2-Y/N, 3-Y, 4-N), Behavioural/

Social + Biological, Non-Behavioural (1-Y, 2-Y/N, 3-Y, 4-Y),

Other methodology (1-Y/N, 2-Y/N, 3-N, 4-N). Disciplines were

attributed based on how the ESI database had classified the

journal in which the paper appeared, and the pure-applied status

of discipline followed classifications identified in previous studies

(for further details see [36]).

From this larger sample, all papers with a corresponding address

in the US were selected, and the US state of each was recorded.

Data on state academic R&D expenditure, number of doctorate

holders in academia and number of papers published were taken

directly from the State Indicators section of the Science and

Engineering Indicators 2006 report [37]. This report compiles

data from three different sources: Thomson ISI - Science Citation

Index and Social Sciences Citation Index; National Science

Foundation, Division of Science Resources Statistics - Survey of

Doctorate Recipients; National Science Foundation, Division of

Science Resources Statistics - Academic Research and Develop-

ment Expenditures. When counting the number of papers by state,

NSF corrects for multiple authorship by dividing each paper by

the number of institutions involved. The scoring of papers as

‘‘positive’’ and ‘‘negative’’ was completely blind to the corre-

sponding author’s address. As explained in the Results section,

data from other reports were extracted and used for sensitivity

analyses.

Statistical analyses
The ability of independent variables to predict the outcome of a

paper was tested by standard logistic regression analysis, fitting a

model in the form:

logit Yð Þ~ln
pi

1{pi

� �
~b0zb1Xi1zb2Xi2z:::zbnXin

in which pi is the probability of the ith paper of reporting a positive

result, X1 is the number of papers published per capita (per

doctorate holder in academia) in the state of the corresponding

author of the ith paper, X2 is the ith paper’s state R&D

expenditure per capita, and Xn represents the various character-

istics of the ith paper that were controlled for in the models (e.g.

dummy variables for methodology, discipline, etc…) as specified in

the Results section. Statistical significance of the effect of each

variable was calculated through Wald’s test. Except where

specified, all parameter estimates are reported with their standard

error. The relative fit of regression models was estimated with

Nagelkerke’s adjusted R2.

Multicollinearity among independent variables was tested by

examining tolerance and Variance Inflation Factors for all

variables in the model. All variables had tolerance$0.42 and

VIF#2.383 except one of the methodological dummy variables

(Tolerance = 0.34 and VIF = 2.942). To avoid this (modest) sign of

possible collinearity, methodological categories were reduced to

the minimum number that previous analyses have shown to differ

significantly in the frequency of positive results: purely physical

and chemical, biological non-behavioural, and behavioural and

mixed studies on humans and on non-humans [36]. This removed

any presence of collinearity in the model. All analyses were

produced using SPSS statistical package.

Figures
Confidence intervals in the graphs were obtained independently

from the statistical analyses, using the following logit transforma-

tion to calculate the proportion of positive results and standard

error:

Plogit~Loge

p

(1{p)

� �

SElogit~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

np
z

1

n(1{p)

s

Where p is the proportion of negative results, and n is the total

number of papers. Values for high and low confidence interval

were calculated and the final result was back-transformed in

percentages using the following equations for proportion and
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percentages, respectively:

P~
ex

exz1

%~100P

Where x is either Plogit or each of the corresponding 95%CI

values.
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