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PPARα is one of three members of the soluble nuclear receptor family called peroxisome proliferator-activated receptor (PPAR).
It is a sensor for changes in levels of fatty acids and their derivatives that responds to ligand binding with PPAR target gene
transcription, inasmuch as it can influence physiological homeostasis, including lipid and carbohydrate metabolism in various
tissues. In this paper we summarize the involvement of PPARα in the metabolically active tissues liver and skeletal muscle
and provide an overview of the risks and benefits of ligand activation of PPARα, with particular consideration to interspecies
differences.

1. Introduction

Dietary fatty acids (FAs) are not only important for
membrane structures and in signalling processes, but also
have the ability to influence gene expression by binding
to specific transcription factors [1]. One receptor family
that acts as mediators to influence transcription according
to nutritional state is the peroxisome proliferator-activated
receptor (PPAR) family. There are three isoforms of PPAR
receptors that have specific, but also overlapping target genes:
α, β/δ, and γ [2–4]. Early on PPAR activity was thought to
mainly influence lipid metabolism, inflammation, and glu-
cose homeostasis. Later it became clear that PPARs also play
a role in modulating the processes of cell proliferation and
differentiation, apoptosis, and aging [5–8]. The receptors
show a nuclear localization in the form of a heterodimer with
the retinoid X receptor (RXR). A ligand activated PPARα-
RXR heterodimer regulates the transcription of genes by
binding to their peroxisome proliferator response elements
(PPREs), a process called “transactivation” [9–11]. Besides, a
mechanism based on “transrepression” has been described
and is reviewed in [12]. The anti-inflammatory actions
of PPARα ligands are mostly thought to be based on
“transrepression” by the negative interference of PPARα with
other transcription factor pathways [13, 14].

Here we focus on the first identified PPAR receptor,
PPARα [15], and its activation in different tissues and

physiological states in humans and mice. It is expressed at
elevated levels in tissues with high metabolic rates, such
as the liver, heart, skeletal muscle, kidney, and also in the
intestine [12, 16]. Additionally, it is present in cells of
the immune system (e.g., macrophages, monocytes, and
lymphocytes) [17–19]. The receptor has a central role in fatty
acid oxidation, lipid and lipoprotein metabolism, inflamma-
tory responses, and oxidative stress. Its position in the centre
of energy balance, lipid metabolism, and inflammation
makes it an important factor in the development of obesity-
related diseases, and therefore, presents a possible target to
influence metabolic disorders. Ligands include saturated and
unsaturated FA and their derivatives, hypolipidemic fibrates
(ciprofibrate, clofibrate, fenofibrate, and gemfibrozil), and
modified fatty acids (e.g., tetradecylthioacetic acid, TTA),
as well as xenobiotics [20–22]. In particular during fasting,
when free FAs are released into the blood, endogenous lipid-
activation is of importance. The importance of PPARα in the
cellular metabolic response to fasting was clearly shown in
PPARα-null mice [23]. Whereas under normal conditions,
these mice do not display a strong phenotype, the absence
of PPARα causes lipid accumulation in liver and heart,
hypoglycemia, hypothermia, ketonuria, and elevated free
fatty acids during fasting ultimately leading to premature
death [23]. In contrast, wildtype mice adapt to fasting by
induction of hepatic and cardiac PPARα target genes that
results in increased FA uptake and oxidation [24].
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Human:

↑ FA uptake, activation
↑ FA oxidation
↑ Lipogenesis
↑ Ketogenesis

⇓ Apolipoprotein production
↑ TAG clearance⇓ Inflammation
↑ Biotransformation

Mouse:

↑ FA uptake, activation
↑ FA oxidation
↑ Lipogenesis
↑ Ketogenesis

↑ Gluconeogenesis, glycolysis ↑ Apolipoprotein production
↑ TAG clearance
⇓ Inflammation
↑ Biotransformation
? Amino acid degradation
? Protein degradation

↑ Peroxisome proliferation
↑Hypertrophy
↑Hyperplasia
⇓ Apoptosis
↑Hepatocarcinogenesis

⇓ Amino acid degradation
↑ Protein degradation

Liver

Figure 1: Examples of the multiple metabolic effects of PPARα acti-
vation in mouse or human liver. FA, fatty acid; TAG, triacylglycerol.

A great number of animal studies have demonstrated
beneficial effects of specific PPAR activation in counteracting
metabolic disorders. An increasing number of human studies
supports the findings obtained in animal studies. When it
comes to PPARα activation, however, it has become clear
that not all results obtained in mice can be extrapolated
to humans and caution is warranted in predicting tissue-
specific effects.

This paper will focus on the tissues liver and skeletal mus-
cle exploring tissue-specific effects of PPARα activation and
stress the differences of human- and mouse-based studies.

2. PPARα in Liver

There are substantial differences between human and mouse
target gene expression in terms of the effect of PPARα acti-
vation in the liver (Figure 1). Overall, the effect of activation
by the PPARα agonist WY14643 is more prominent in mice
than in humans [25]. In primary hepatocytes from mice and
humans treated with WY14643, only a few target genes were
affected similarly in the two species. However, both species
share multiple changed gene ontology classes, including lipid
metabolism. Individual PPARα regulation was observed for
enzymes involved in biotransformation (chemical alterations
of compounds in the body), as well as apolipoprotein
and bile acid synthesis in human hepatocytes, and glucose
homeostasis in mouse hepatocytes [25]. It was proposed
earlier that the response might be dampened by quantitative
differences of PPARα expression or different splice forms
of PPARα. Indeed, there exist two splice variants of PPARα
giving rise to an active and inactive receptor in humans
[26]. To compare PPARα expression levels between human
and mouse liver is, however, difficult due to daily variations
[27] and differing reports have been published. Some reports
show lower PPARα expression levels in human than in rodent
liver [28–30], while another shows comparable expression
levels between the two species [25].

One of the main pathways involving PPARα regulation
in mice and humans includes FA metabolism. In mice,
PPARα activation is important for FA metabolism through

the induction of genes coding for the fatty acid transporter
CD36 [31] and the FA binding protein 1 (FABP1) that brings
the FAs from the plasma membrane to the nucleus [32].
Another PPARα target gene is carnitine palmitoyl transferase
1 (Cpt1), that codes for a protein important for FA transport
into mitochondria [25].Whereas CPT1 is localized to the
outer membrane, CPT2, that is also regulated by PPARα,
is found in the inner mitochondrial membrane. It converts
acyl-carnitine to acyl-CoA and is strongly upregulated by
PPARα agonists [33]. Most of the genes of FA metabolism are
regulated by PPARα in both humans and mice, however Cd36
is an example of species-specific induction in mice [25].

Genes encoding for mitochondrial proteins of the β-
oxidation pathway are induced by PPARα activation, such as
acyl-CoA synthetase (Acs) coding for an enzyme responsible
for activation of FA to their fatty acyl-CoA derivatives. Also
genes of the short-, medium-, long- and very-long-chain
acyl-CoA dehydrogenases (Acad -s, -m, -l, -vl) coding for
proteins that catalyze the first step in FA oxidation in a chain
length-specific manner, are under the control of PPARα. In
addition, the expression of the gene encoding the enzyme
acetyl-CoA acyltransferase 2 (ACAA2) involved in the final
step of β-oxidation, is PPARα dependent. Furthermore,
hepatic carnitine synthesis is enhanced by PPARα activation
in mice [34, 35]. Carnitine is a conditionally essential
nutrient that plays an important role in mitochondrial
long-chain FA import for β-oxidation [36]. In PPARα-
null mice, free carnitine levels were drastically suppressed
in plasma and several tissues including liver, the primary
site of carnitine biosynthesis. This was consistent with
reduced hepatic expression of the genes involved in carnitine
biosynthesis (Bbox1) and transport (Octn2) [37]. In an
earlier study, Van Vlies and colleagues established a fasting-
induced elevation of these genes that is PPARα-dependent
[38]. Both studies point to an essential position for PPARα in
carnitine metabolism in mice [37, 38]. No similar indications
of PPARα-induced carnitine synthesis have been described
in humans. However, pigs that also are a nonproliferative
species and are considered similar to humans due to their
metabolic features, show an increased carnitine production
upon fasting [39]. It is therefore likely that also humans will
prove to have a similar response.

Peroxisomal fatty acid oxidation is important for the
partial oxidation of long, very long, and branched FAs. The
first characterized PPARα target gene, acyl-CoA oxidase 1
(Acox1) encodes the rate-limiting enzyme of this process
[40]. After ACOX1 has introduced a double bond to generate
enoyl-CoA and H2O2, the bifunctional protein/enoyl-CoA
hydratase (BIEN), that carries two enzymatic activities,
performs the second step of β-oxidation resulting in 3-
ketoacyl-CoA. 3-ketoacyl-CoA is then cleaved by acetyl-
CoA acyltransferase 1 (ACAA1) to produce acetyl-CoA [41].
All the above-mentioned genes are under the regulation of
PPARα in mice.

In addition to mitochondrial and peroxisomal β-
oxidation, ω-hydroxylation occurs in smooth endoplasmic
reticulum. In both mice and humans, this process is upreg-
ulated by the effect of PPARα on expression of cytochrome
P450 4A11 (CYP4A11) [25, 42–44]. The hepatic cytochrome
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P450 4A11 catalyzes ω-hydroxylation of medium and long-
chain FAs. Subsequently cytosolic dehydrogenases convert
them to dicarboxylic acids, which can be further processed by
peroxisomal β-oxidation. Human PPARα also is a transcrip-
tional regulator of FA oxidation in the different organelles,
but shows overlap with mice rather on the pathway than on
the gene level [25]. To conclude, PPARα regulates enzymes
important for uptake, traffic to final destination, activation,
and oxidation of FAs in the three organelles mitochondria,
peroxisomes, and microsomes in both mice and humans.

Paradoxically, at the same time as PPARα activation
leads to an increase in FA oxidation, it also augments
FA synthesis by affecting gene expression levels of several
enzymes involved in lipogenesis. In mice, PPARα stimulates
the conversion of malate into pyruvate to generate NADPH
for lipogenesis by upregulating the expression of malic
enzyme (ME1) [45]. Besides, the Δ5, Δ6, and Δ9 desaturases,
rate-limiting enzymes in the synthesis of polyunsaturated
FAs (PUFAs) from saturated FAs, are found in increased
amounts after PPARα activation [46–48]. The induction of
desaturases could help to ensure that there are always enough
PUFAs for their diverse functions, including being effective
PPARα agonists as proposed by others [46]. Likewise, PPARα
activation in human hepatocytes induces the expression of
several target genes involved in FA synthesis [25].

Other crucial processes requiring PPARα activation are
lipoprotein synthesis and assembly. The impact of PPARα
agonist on lipoprotein gene expression in humans or mice
is distinct. The use of fibrates in humans leads to reduced
plasma triacylglycerol (TAG) levels and increased high-
density lipoprotein (HDL) cholesterol levels. In mice, plasma
TAG as well as HDL levels are lowered. The liver, besides
the intestine, determines the amount of HDL in plasma
by regulating HDL synthesis and catabolism. The reason
for the species-specific opposite effect of PPARα activation
on HDL levels is probably increased production levels of
apolipoprotein A-I (APOA1) and APOA2 in humans [49, 50]
and suppressed (APOA1) or unchanged (APOA2) expression
in mice [51]. These apolipoproteins are part of HDL choles-
terol and are crucial for reverse cholesterol transport from
peripheral cells to the liver, where excess cholesterol can be
eliminated into the bile [52]. The liver is also the place where
very low-density lipoprotein (VLDL) particles are assembled
and then secreted into the plasma. The VLDL amount in
peripheral cells is influenced by lipoprotein lipase (LPL).
The hepatic expression of this hydrolase, which mediates
VLDL triglyceride lipolysis, is upregulated by PPARα [53].
Moreover, its activity is stimulated by APOA5 and inhibited
by APOC3. Activation of PPARα increases APOA5 [54–
56] and decreases APOC3 [57] transcription, resulting in a
plasma TAG lowering effect, thereby, together with increased
HDL concentrations, reducing the risk for atherosclerosis in
humans [58].

The removal of excess cholesterol from the body is via
the bile, a fluid produced in the liver, stored in the gall
bladder, and secreted into the small intestine. Cholesterol is
eliminated either intact or as bile acids that are steroid acids
made from cholesterol. In humans, the two main bile acids
synthesized in the liver, are chenodeoxycholic acid (CDCA)

and cholic acid (CA) [59, 60]. Due to their amphipathic
character they aid in the small intestine for the digestion
and absorption of dietary lipids. There is controversy in
the literature regarding the regulation of the rate-limiting
enzyme in hepatic bile acid synthesis, called cholesterol 7α-
hydroxylase (CYP7A1). Some reports suggest a transcrip-
tional upregulation of Cyp7a1 upon PPARα activation in
mice [61, 62]. In particular, the upregulation of Cyp7a1
under fasting conditions and the downregulation of this
enzyme in PPARα-null mice corroborate a PPARα regulatory
involvement and suggest increased expression upon fasting-
induced PPARα activation [62]. Other studies support
a downregulation of this endoplasmic reticulum enzyme
upon induction with PPARα agonists in both humans and
rodents [63–67]. This could be a potential risk for gallstone
formation, if in humans receiving treatment with fibrates,
bile acid synthesis is decreased over a longer period of time
by a hepatic decrease of CYP7A1 activity. On the other
hand, gene expression of sterol 12α-hydroxylase (Cyp8b1),
an enzyme involved in CA synthesis, is increased under
fasting and also with ligand-induced PPARα-activation in
both rodents and humans [62, 67, 68]. This protein of
the cytochrome P450 family controls the balance between
CA and CDCA levels. Upon Cyp8b1 induction, higher CA
concentrations positively influence the bile acid composition
by increasing cholesterol solubility.

Important under conditions of extended fasting is the
process called ketogenesis. In mice and humans, the pro-
duction of ketone bodies is under the control of PPARα
that upregulates the gene expression of mitochondrial 3-
hydroxy-3-methylglutaryl-CoA synthase (Hmgcs2), coding
for the rate-limiting enzyme of ketogenesis [25, 69, 70]. Of
particular importance in regulating ketogenesis, in addition
to FA oxidation, TAG clearance, and de novo lipogenesis
is the ‘hormone-like’ fibroblast growth factor 21 (FGF21)
[71–73]. Its hepatic expression is PPARα-dependent and is
induced by fasting, a ketogenic diet, and WY14643 [25,
71, 74, 75]. FGF21 positively influences lipid and glucose
metabolism, in addition to insulin sensitivity in animals
[76].

Hepatic gluconeogenesis is also regulated during fasting,
when the liver changes from glucose uptake and glycogen
synthesis to glucose production. The chain of reactions
converting glycerol, lactate, or glucogenic amino acids to glu-
cose involves the two rate-limiting enzymes, phosphoenol-
pyruvate carboxykinase (PEPCK) and pyruvate carboxylase
(PYC). Of these two genes, only the promoter for Pepck was
found to have a functional PPRE in mice [77]. The induction
of other enzymes in this pathway is PPARα-dependent,
such as glycerol-3-phosphate dehydrogenase (GPDH) and
glycerol kinase (GK), as well as the aquaporins (AQP) 3 and
9 that act as liver glycerol import channels [78]. The observa-
tion that PPARα-null mice manifest lower fed and fasted glu-
cose levels supports an involvement of PPARα in hepatic glu-
cose production [77]. However, another report proposes as a
reason for fasting hypoglycemia, the preferential channelling
of glucose-6-phosphate to hepatic glycogen stores and
shows unchanged glucose 6-phosphate synthesis in PPARα-
null mice [79]. The pathway glycolysis/gluconeogenesis is
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specifically affected by PPARα activation in mice and shows
no response in human primary hepatocytes [25].

The enzyme glyoxylate reductase/hydroxypyruvate redu-
ctase (GRHPR) is important in the channelling of carbons
from the glyoxylate cycle into gluconeogenesis or into the
urea cycle depending on the body energy demands. In mice,
PPARα activation (e.g., in the fasted state) is crucial in induc-
ing transcriptional activation of Grhpr, thereby favouring a
conversion of hydroxypyruvate to D-glycerate, a substrate
needed in glucose synthesis [80]. In humans however,
GRHPR expression was shown to be PPARα-independent
due to promoter reorganisation during primate evolution.
Moreover, alanine:glyoxylate aminotransferase (AGT), an
enzyme of the glyoxylate cycle with two enzymatic activities
is positively regulated by PPARα [80]. Its transaminase activ-
ity leads to the production of glycine and hydroxypyruvate.

Beyond the transcriptional activation of genes involved
in lipid and glucose metabolism, the PPARα agonist
WY14643 affects amino acid metabolism in rodents [81, 82].
The metabolic consequences include alterations in plasma
amino acid levels. Whereas branched-chain amino acid
amounts showed no change upon PPARα activation with
WY14643, a significant increase in various glucogenic and
some ketogenic amino acids was detected in rats [82]. Only
one amino acid was lowered, namely arginine, a condition-
ally nonessential amino acid made in the urea cycle. mRNA
levels of enzymes involved in the conversion of citrulline
to arginine in the kidney are unknown, but hepatic levels
of argininosuccinate synthetase (Ass) and argininosuccinate
lyase (Asl) show a decrease [81, 82]. The exact mechanism
of PPARα regulation of amino acid metabolism is unknown
but certain genes involved in the regulation of amino acid
degradation have also been shown to be negatively regulated,
with the exclusion of Grhpr and arginase (Arg1) [81, 82]. The
decreased amino acid degradation upon WY14643 treatment
is accompanied by an increase in protein degradation.
Some possible explanations for the observed amino acid
mobilization upon PPARα induction are give in [82] and
might be due to increased hepatic growth. The current
findings are restricted to rodents and it is unclear at present
if the situation is similar in humans that show no liver
enlargement. One study points to a different situation in
humans and describes increased plasma arginine levels after
fenofibrate treatment of hypertriglyceridemic men [83]. The
findings in rodents are limited to WY14643 treatment and
it remains to be shown if they are of general character for
PPARα ligands. The clofibrate-induced increased oxidation
of branched-chain amino acids seems to be due to its direct
inhibitory actions on branched-chain α-keto acid dehydro-
genase kinase (BCKDK) that regulates the key enzyme of
this process, and not due to effects mediated through PPARα
activation [84].

Additionally, in mice, PPARα activation inhibits inflam-
matory gene expression by downregulation of acute phase
proteins such as C-reactive protein (CRP), fibrinogen,
and serum amyloid A (SAA) resulting in reduced hepatic
inflammation and risk for cardiovascular disease and cancer
[85]. Likewise in humans, there is a similar downregulation
of plasma acute phase proteins after fenofibrate treatment

[86]. Recently, it was demonstrated that the expression of
the transcription factor CREBH that is exclusively found in
the liver, is regulated by PPARα in both mice and humans
[25]. It plays an important role in the activation of the acute
inflammatory response and is also a regulator of hepatic
gluconeogenesis [87, 88].

Described in mice is the reduced risk of liver damage
by chemical-induced stress. Exposure to hepatotoxic agents
like the environmental pollutant carbon tetrachloride (CCl4)
induces reversible liver damage [89]. The underlying reason
is a decreased resistance to oxidative stress that leads to lipid
peroxidation, altered calcium homeostasis, and membrane
damage. Stimulated mRNA expression of uncoupling protein
2 (Ucp2) by PPARα in rodents results in uncoupling of the
proton gradient across the inner mitochondrial membrane
and a downregulation of reactive oxygen species (ROS)
induced by CCl4 metabolites [90, 91]. In addition, PPARα
helps to protect from chemical-induced oxidative stress by
upregulating genes of the chaperone family and of the
proteasome, thereby influencing protein folding and degra-
dation of harmed proteins in mice [92]. Furthermore, the
observation that PPARα-null mice demonstrate decreased
longevity, where stress response genes are of importance,
and that PPARα expression decreases with age, suggests an
involvement of PPARα in this process [7].

In rodents, long-term administration of PPARα leads to
increased peroxisome proliferation, in addition to hepatic
hypertrophy and hyperplasia that will ultimately result in
liver tumors [93–98]. The carcinogenic response is based
on enhanced cell replication that might increase the risk for
DNA damage and altered oncogene and tumor suppressor
gene expressions. Moreover, there is evidence for suppressed
apoptosis in liver cells, a process important for the removal of
damaged cells [99–102]. There is also a close relationship of
PPARα-induced cancer formation with increased production
of ROS due to peroxisome proliferation that might con-
tribute to DNA damage [103].

Shah and colleagues have proposed changed hepatic
microRNA (miR) expression via PPARα-regulation as the
reason for liver cancer formation [104]. miRs are 21–23
nucleotide long sequences that are suggested to regulate the
expression of up to 30% of all genes [105, 106]. Experimental
evidence pointed to PPARα-involvement in several changed
miR levels, in particular in the downregulation of miR let-7c
by an as yet unidentified mechanism [104]. Let-7c controls
c-Myc protein levels, a transcription factor regulating target
genes involved in cell proliferation. Downregulation of let-
7c stabilizes c-Myc mRNA leading to the expression of c-Myc
target genes. This could be a reason for enhanced hepatocyte
proliferation, that together with the induction of oxida-
tive stress might lead to hepatocarcinogenesis in rodents.
Induction of hepatocarcinogenesis seems to be restricted
to rodents and is not documented in humans (extensively
reviewed in [107]). Cancer formation after PPARα activation
in tissues other than the liver has been described in rats
and includes testicular (Ledig cell) and pancreatic acinar cell
tumors [108]. However, if these findings are of significance
for humans requires further in-depth risk assessments.
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In summary, the hepatic response to PPARα activation is
essential under fasting conditions. PPARα activation by FAs
released from the adipose tissue leads to induction of several
metabolic processes in mice: β-oxidation, ketogenesis, glycol-
ysis/gluconeogenesis, with concomitant reduction of amino
acid catabolism and an anti-inflammatory response. The
changes result in an increased plasma concentration of glu-
cose and ketone bodies and decreased urea and acute phase
proteins. PPARα is important in both mice and humans
for the regulation of lipid metabolism. In contrast to mice,
humans show no effect on the glycolysis/gluconeogenesis
pathway. One pathway specifically affected in humans and
not in mice is apolipoprotein production. In humans treated
with a PPARα activator, hepatic transcription activation
leads to decreased VLDL production and plasma TAG
levels, but increased HDL cholesterol, important parameters
in the treatment for dyslipidemia, type 2 diabetes, or
cardiometabolic disorders.

3. PPARα in Skeletal Muscle

In human skeletal muscles, three main muscle fiber types,
type I (oxidative, slow twitch), IIA (intermediate) and IIX
(glycolytic, fast twitch), can be delineated based on histo-
chemical, functional and biochemical properties (reviewed
in [109]). In human skeletal muscle cells in vitro, PPARα was
shown to be induced early during myocyte differentiation
[110, 111]. A correlation between the expression of PPARα,
proportion of type I fibers and endurance exercise has
been found in human skeletal muscle in vivo [112, 113].
The expression of PPARα (as well as of PPARδ and the
PPARγ coactivator (PGC)-1α and -1ß) in skeletal muscle
was increased in athletes and reduced in spinal cord-injured
subjects [113]. The observed increase of PPARα expression
after endurance training [112, 114] was greater in type I
fibers than in type IIA and IIX fibers [112]. Also in rat skeletal
muscle, fiber-type specific PPARα activation was found.
When treated with the PPARα agonist fenofibrate, 26 genes
were identified that were significantly regulated in soleus
(type I) but not in quadriceps femoris (type II) rat muscle
[115]. The correlation of PPARα expression and exercise
has not been found in animal studies. In rats, four weeks
of exercise did not change the PPARα mRNA expression
in skeletal muscle in control chow-fed animals, and in fat-
fed rats exercise counteracted the diet-induced increase of
PPARα expression [116].

Both in human and rodent skeletal muscle, activation
of PPARα affects lipid metabolism. Activation of PPARα
by a potent agonist (GW7647) in differentiated human
myotubes in vitro stimulated lipid oxidation [110, 117]
and decreased accumulation of TAG [110]. Other, less
potent PPARα agonists did not increase lipid oxidation in
human myotubes [118]. In the same cell model, GW7647
upregulated the expression of pyruvate dehydrogenase kinase
(PDK)4 [119]. PDK4 is an important isoenzyme regulating
the activity of pyruvate dehydrogenase complex. The enzyme
phosphorylates and inhibits the pyruvate dehydrogenase
complex and thereby blocks the entry of carbohydrates into
the mitochondria for oxidation (for reviews see [120, 121].

Pdk4 was also induced in rat gastrocnemius muscle after
treatment of the animals with the PPARα agonist WY14643,
by streptozotocin-induced diabetes, or by starvation, i.e.
conditions where increased levels of long-chain fatty acids
may activate PPARα [122]. Pathway analysis of the genes
significantly regulated in soleus (type I), but not in quadri-
ceps femoris (type II) muscle by fenofibrate in rats, revealed
that the most significant function represented in the gene set
was lipid metabolism [115]. Treatment with a potent PPARα
agonist increased the expression of Cpt-1 in hamster soleus
muscle [123].

Influence of PPARα on both lipid and glucose meta-
bolism was highlighted in transgenic mice overexpressing
PPARα in skeletal muscle [124]. In these animals many
known PPARα target genes involved in cellular fatty acid
import and binding, TAG synthesis, and mitochondrial
and peroxisomal β-oxidation were activated, and genes
involved in cellular glucose utilization were downregulated
in skeletal muscle. Basal and insulin-stimulated glucose
uptake was reduced in isolated skeletal muscle, and the
transgenic animals developed glucose intolerance despite
being protected from diet-induced obesity [124]. In contrast,
in PPARα-null mice, glucose tolerance, insulin-stimulated
glucose disposal and glucose uptake were increased in spite
of high fat-induced weight gain and increased levels of
TAGs in muscle [124]. In another study, fatty acid oxidation
in skeletal muscle was found to be reduced by 28% in
starved PPARα-null mice compared to wild type (WT) mice,
however in fed animals fatty acid oxidation in PPARα-null
and WT mice was similar [125]. TCA cycle intermediates,
amino acids and short-chain acylcarnitine species were
reduced in skeletal muscle of PPARα-null mice compared to
WT mice, indicating impaired TCA cycle flux and increased
protein catabolism combined with defects in fatty acid
catabolism in PPARα-null mice [37].

In humans and mice, a negative side effect of PPARα
activation in muscle is in rare cases (<1%) muscle weakness
and pain (myopathy) or very seldom breakdown of muscle
(rhabdomyolysis) [126–129]. In particular, type I fibers
are affected by skeletal muscle toxicity in rats [115]. The
exact mechanisms are unclear at present, but might include
oxidative stress and tissue damage from elevated peroxisomal
and mitochondrial β-oxidation [130].

PPARα also seems to exert a role in protecting against
ischemic injury in skeletal muscle as well as in heart and liver
[131]. Thus, in mouse skeletal muscle, loss of the oxygen
sensor prolyl oxidase (PHD)1 was found to lower oxygen
consumption by shifting to a more anaerobic glucose utiliza-
tion through activation of PPARα-dependent genes [131].

Another PPAR, PPARδ, is the most abundant PPAR
isoform in skeletal muscle. Similar to PPARα, the expression
of PPARδ has been described to be higher in type I fibers
compared to type II fibers (reviewed in [132]). Also alike
to PPARα, activation of PPARδ induces a number of genes
involved in fatty acid import and oxidation, and increases
lipid oxidation in skeletal muscle [125, 133–136], indicating
redundancy in the functions of PPARα and δ as regulators of
fatty acid metabolism [125]. However, in contrast to PPARα,
activation of PPARδ has been shown to increase glucose
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↑ FA oxidation (mouse, rat, human)
⇓ TAG accumulation (human)

··
↑ Glucose intolerance (mouse ∗)
↑ Insulin resistance (mouse ∗)

PPARδ activationPPARα activation

↑ FA oxidation (mouse, rat, human)
↑ FA uptake (human)
↑ Glucose uptake (mouse, human)
··

PPARα in skeletal muscle
∗ Mouse overexpressing

↑ Insulin sensitivity (mouse)

⇓ Glucose uptake (mouse ∗)

Skeletal muscle

Figure 2: Examples of metabolic effects of PPARα or PPARδ
activation in skeletal muscle. FA, fatty acid; TAG, triacylglycerol. For
references, see the text.

uptake [136, 137] and prevent insulin resistance in skeletal
muscle (Figure 2) [138].

In summary, PPARα has been shown to be involved
in lipid and glucose metabolism in skeletal muscle. PPARα
activation increases lipid oxidation and decreases TAG accu-
mulation. Overexpression of PPARα in skeletal muscle causes
reduced glucose uptake in muscle and glucose intolerance in
the animals, while PPARα-null mice show increased glucose
tolerance, increased insulin-stimulated glucose disposal and
enhanced glucose uptake in skeletal muscle, in spite of high
fat-induced weight gain and increased levels of TAGs in
muscle. Thus, PPARα activation may potentially exert both
beneficial and undesirable effects on skeletal muscle fuel
metabolism. Activation of PPARα and PPARδ seems to have
overlapping effects on fatty acid metabolism, but possibly
different effects on glucose metabolism in skeletal muscle.

4. Concluding Remarks

The transcription factor PPARα influences metabolism
through activation of many target genes in a variety of
metabolically active tissues, in particular under fasting
conditions. Cross-species prognostics are not always possible
due to differences in metabolism, expression levels, or diet.
While observations in rodents could have pointed to risks for
human treatment with PPARα agonists (e.g., hepatocarcino-
genesis, skeletal muscle insulin resistance, and myopathy) it
has been shown that in humans, PPARα activation is a useful
therapeutic target in treating metabolic disorders. Clinical
studies on drug-induced PPARα activation include fibrates,
statins, and more recently the combination of statins with
fibrates. In humans, fibrates have the characteristic of reduc-
ing TAG levels and increasing HDL cholesterol, however
not all trials show a vascular benefit. In some trials, clinical
end-points like the rate of coronary heart disease in type 2
diabetes patients (VAHIT: Veterans affairs HDL intervention
Trial, [139]) or the progression of atherosclerosis in young
men after a first myocardial infarction (BECAIT: Bezafibrate
Coronary Atherosclerosis Intervention Trial, [140]) could be
reduced by treatment. Statin therapy shows more consistent
benefits with decreased plasma LDL cholesterol levels and

reduced vascular disorders and death [141]. The Action to
Control Cardiovascular Risk in Diabetes (ACCORD) lipid
study, addressed whether a fibrate (fenofibrate) and statin
(simvastatin) combination would reduce the rate of cardio-
vascular events more than individual treatments in type 2
diabetes patients [142]. The combination treatment however
did not influence the primary outcome significantly more
than simvastatin alone, but instead showed a sex-dependent
difference, with more benefits for men than women.

Rodent studies are mostly done in male animals, but
the response of PPARα activation in male versus females
was investigated in some studies and seems to be influenced
by estrogen [143, 144]. This female hormone inhibits
PPARα action and represses lipid regulatory pathways in
the liver. Thus, in the treatment with PPARα agonists,
gender-differences have to be taken into consideration and
while therapy might be advantageous against lipid disorders
in men and postmenopausal women with no interfering
estrogen, premenopausal women might not benefit from the
same treatment [145].
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[137] D. K. Krämer, L. Al-Khalili, S. Perrini et al., “Direct activation
of glucose transport in primary human myotubes after
activation of peroxisome proliferator-activated receptor δ,”
Diabetes, vol. 54, no. 4, pp. 1157–1163, 2005.
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