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ABSTRACT

Advances in high-throughput sequencing (HTS) have
fostered rapid developments in the field of microbiome
research, and massive microbiome datasets are now
being generated. However, the diversity of software
tools and the complexity of analysis pipelines make it
difficult to access this field. Here, we systematically
summarize the advantages and limitations of micro-
biome methods. Then, we recommend specific pipelines
for amplicon and metagenomic analyses, and describe
commonly-used software and databases, to help
researchers select the appropriate tools. Furthermore,
we introduce statistical and visualization methods suit-
able for microbiome analysis, including alpha- and beta-
diversity, taxonomic composition, difference compar-
isons, correlation, networks, machine learning, evolu-
tion, source tracing, and common visualization styles to
help researchers make informed choices. Finally, a step-
by-step reproducible analysis guide is introduced. We
hope this review will allow researchers to carry out data
analysis more effectively and to quickly select the
appropriate tools in order to efficiently mine the bio-
logical significance behind the data.

KEYWORDS metagenome, marker genes, high-
throughput sequencing, pipeline, reproducible analysis,
visualization

INTRODUCTION

Microbiome refers to an entire microhabitat, including its
microorganisms, their genomes, and the surrounding envi-
ronment (Marchesi and Ravel, 2015). With the development
of high-throughput sequencing (HTS) technology and data
analysis methods, the roles of the microbiome in humans
(Gao et al., 2018; Yang and Yu, 2018; Zhang et al., 2018a),
animals (Liu et al., 2020), plants (Liu et al., 2019a; Wang
et al., 2020a), and the environment (Mahnert et al., 2019;
Zheng et al., 2019) have gradually become clearer in recent
years. These findings have completely changed our under-
standing of the microbiome. Several countries have laun-
ched successful international microbiome projects, such as
the NIH Human Microbiome Project (HMP) (Turnbaugh
et al., 2007), the Metagenomics of the Human Intestinal
Tract (MetaHIT) (Li et al., 2014), the integrative HMP (iHMP)
(Proctor et al., 2019), and the Chinese Academy of Sciences
Initiative of Microbiome (CAS-CMI) (Shi et al., 2019b). These
projects have made remarkable achievements, which have
pushed microbiome research into a golden era.

The framework for amplicon and metagenomic analysis
was established in the last decade (Caporaso et al., 2010;
Qin et al., 2010). However, microbiome analysis methodsYong-Xin Liu, Yuan Qin and Tong Chen have contributed equally to
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and standards have been evolving rapidly over the past few
years (Knight et al., 2018). For example, there was a pro-
posal to replace operational taxonomic units (OTUs) with
amplicon sequence variants (ASVs) in marker gene-based
amplicon data analysis (Callahan et al., 2016). The next-
generation microbiome analysis pipeline QIIME 2, a repro-
ducible, interactive, efficient, community-supported platform
was recently published (Bolyen et al., 2019). In addition, new
methods have recently been proposed for taxonomic clas-
sification (Ye et al., 2019), machine learning (Galkin et al.,
2018), and multi-omics integrated analysis (Pedersen et al.,
2018).

The development of HTS and analysis methods has
provided new insights into the structures and functions of
microbiome (Jiang et al., 2019; Ning and Tong, 2019).
However, these new developments have made it challenging
for researchers, especially those without a bioinformatics
background, to choose suitable software and pipelines. In
this review, we discuss the widely used software packages
for microbiome analyses, summarize their advantages and
limitations, and provide sample codes and suggestions for
selecting and using these tools.

HTS METHODS OF MICROBIOME ANALYSIS

The first step in microbiome research is to understand the
advantages and limitations of specific HTS methods. These
methods are primarily used for three types of analysis:

microbe-, DNA-, and mRNA-level analyses (Fig. 1A). The
appropriate method(s) should be selected based on sample
types and research goals.

Culturome is a high-throughput method for culturing and
identifying microbes at the microbe-level (Fig. 1A). The
microbial isolates are obtained as follows. First, the samples
are crushed, empirically diluted in liquid medium, and dis-
tributed in 96-well microtiter plates or Petri dishes. Second,
the plates are cultured for 20 days at room temperature.
Third, the microbes in each well are subjected to amplicon
sequencing, and wells with pure, non-redundant colonies are
selected as candidates. Fourth, the candidates are purified
and subjected to 16S rDNA full-length Sanger sequencing.
Finally, the newly characterized pure isolates are preserved
(Zhang et al., 2019). Culturome is the most effective method
for obtaining bacterial stocks, but it is expensive and labor
intensive (Fig. 1B). This method has been used for micro-
biome analysis in humans (Goodman et al., 2011; Zou et al.,
2019), mouse (Liu et al., 2020), marine sediment (Mu et al.,
2018), Arabidopsis thaliana (Bai et al., 2015), and rice
(Zhang et al., 2019). These studies not only expanded the
catalog of taxonomic and functional databases for metage-
nomic analyses, but also provided bacterial stocks for
experimental verification. For further information, please see
(Lagier et al., 2018; Liu et al., 2019a).

DNA is easy to extract, preserve, and sequence, which has
allowed researchers to develop various HTSmethods (Fig. 1A).
The commonly used HTSmethods of microbiome are amplicon
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Figure 1. Advantages and limitations of HTS methods used in microbiome research. A Introduction to HTS methods for

different levels of analysis. At the molecule-level, microbiome studies are divided into three types: microbe, DNA, and mRNA. The

corresponding research techniques include culturome, amplicon, metagenome, metavirome, and metatranscriptome analyses. B The

advantages and limitations of various HTS methods for microbiome analysis.

316 © The Author(s) 2020

P
ro
te
in

&
C
e
ll

REVIEW Yong-Xin Liu et al.



and metagenomic sequencing (Fig. 1B). Amplicon sequencing,
themost widely used HTSmethod for microbiome analysis, can
be applied to almost all sample types. The major marker genes
used inampliconsequencing include16SribosomeDNA(rDNA)
for prokaryotes and 18S rDNA and internal transcribed spacers
(ITS) for eukaryotes. 16S rDNAampliconsequencing is themost
commonly usedmethod, but there is currently a confusing array
of available primers. A good method for selecting primer is to
evaluate their specificity and overall coverage using real sam-
plesor electronicPCRbasedon theSILVAdatabase (Klindworth
et al., 2012) and on host factors including the presence of
chloroplasts, mitochondria, ribosomes, and other potential
sources of non-specific amplification. Alternatively, researchers
can refer to the primers used in published studies similar to their
own,whichwould save time inmethodoptimization and facilitate
to compare results among studies. Two-step PCR is typically
used for amplification and to add barcodes and adaptors to each
sample during library preparation (de Muinck et al., 2017).
Sample sequencing is often performed on the Illumina MiSeq,
HiSeq 2500, orNovaSeq 6000 platform in paired-end250 bases
(PE250) mode, which generates 50,000–100,000 reads per
sample. Amplicon sequencing can be applied to low-biomass
specimens or samples contaminated by host DNA. However,
this techniquecanonly reachgenus-level resolution.Moreover, it
is sensitive to the specific primers and number of PCR cycles
chosen, whichmay lead to some false-positive or false-negative
results in downstream analyses (Fig. 1B).

Metagenomic sequencing provides more information than
amplicon sequencing, but it is more expensive using this
technique. For ‘pure’ samples such as human feces, the
accepted amount of sequencing data for each sample ran-
ges from 6 to 9 gigabytes (GB) in a metagenomic project.
The corresponding price for library construction and
sequencing ranges from $100 to $300. For samples con-
taining complex microbiota or contaminated with host-
derived DNA, the required sequencing output ranges from
30 to 300 GB per sample (Xu et al., 2018). In brief, 16S rDNA
amplicon sequencing could be used to study bacteria and/or
archaea composition. Metagenomic sequencing is advisable
for further analysis if higher taxonomic resolution and func-
tional information are required (Arumugam et al., 2011; Smits
et al., 2017). Of course, metagenomic sequencing could be
used directly in studies with smaller sample sizes, assuming
sufficient project funding is available (Carrión et al., 2019;
Fresia et al., 2019).

Metatranscriptomic sequencing can profile mRNAs in a
microbial community, quantify gene expression levels, and
provide a snapshot for functional exploration of a microbial
community in situ (Turner et al., 2013; Salazar et al., 2019). It
is worth noting that host RNA and other rRNAs should be
removed in order to obtain transcriptional information of
microbiota (Fig. 1B).

Since viruses have either DNA or RNA as their genetic
materials, technically, metavirome research involves a
combination of metagenome and metatranscriptome analy-
ses (Fig. 1A and 1B). Due to the low biomass of viruses in a

sample, virus enrichment (Metsky et al., 2019) or the
removal of host DNA (Charalampous et al., 2019) is
essential steps for obtaining sufficient quantities of viral DNA
or RNA for analysis (Fig. 1B).

The selection of sequencing methods depends on the
scientific questions and sample types. The integration of
different methods is advisable, as multi-omics provides
insights into both the taxonomy and function of the micro-
biome. In practice, most researchers select only one or two
HTS methods for analysis due to time and cost limitations.
Although amplicon sequencing can provide only the taxo-
nomic composition of microbiota, it is cost effective ($20–50
per sample) and can be applied to large-scale research. In
addition, the amount of data generated from amplicon
sequencing is relatively small, and the analysis is quick and
easy to perform. For example, data analysis of 100 amplicon
samples could be completed within a day using an ordinary
laptop computer. Thus, amplicon sequencing is often used in
pioneering research. In contrast to amplicon sequencing,
metagenomic sequencing not only extends taxonomic res-
olution to the species- or strain-level but also provides
potential functional information. Metagenomic sequencing
also makes it possible to assemble microbial genomes from
short reads. However, it does not perform well for low-bio-
mass samples or those severely contaminated by the host
genome (Fig. 1B).

ANALYSIS PIPELINES

“Analysis pipeline” refers to a particular program or script that
combines several or even dozens of software programs
organically in a certain order to complete a complex analysis
task. As of January 23, 2020, the words “amplicon” and
“metagenome” were mentioned more than 200,000 and
40,000 times in Google Scholar, respectively. Due to their
wide usage, we will discuss the current best-practice
pipelines for amplicon and metagenomic analysis.
Researchers should get acquainted with the Shell environ-
ment and R language, which we discussed in our previous
review (Liu et al., 2019b).

Amplicon analysis

The first stage of amplicon analysis is to convert raw reads
(typically in fastq format) into a feature table (Fig. 2A). The
raw reads are usually in paired-end 250 bases (PE250)
mode and generated from the Illumina platforms. Other
platforms, including Ion Torrent, PacBio, and Nanopore, are
not discussed in this review and may not be suitable for the
analysis pipelines discussed below. First, raw amplicon
paired-end reads are grouped based on their barcode
sequences (demultiplexing). Then the paired reads
are merged to obtain amplicon sequences, and barcode and
primers are removed. A quality-control step is normally
needed to remove low-quality amplicon sequences. All of
these steps can be completed using USEARCH (Edgar,
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2010) or QIIME (Caporaso et al., 2010). Alternatively, clean
amplicon data supplied by sequencing service providers can
be used for next analysis (Fig. 2A).

Picking the representative sequences as proxies of a
species is a key step in amplicon analysis. Two major
approaches for representative sequence selection are clus-
tering to OTUs and denoising to ASVs. The UPARSE algo-
rithm clusters sequences with 97% similarity into OTUs
(Edgar, 2013). However, this method may fail to detect subtle
differences among species or strains. DADA2 is a recently
developed denoising algorithm that outputs ASVs as more
exactly representative sequences (Callahan et al., 2016).
The denoising method is available at denoise-paired/single
by DADA2, denoise-16S by Deblur in QIIME 2 (Bolyen et al.,
2019), and -unoise3 in USEARCH (Edgar and Flyvbjerg,
2015). Finally, a feature table (OTU/ASV table) can be
obtained by quantifying the frequency of the feature
sequences in each sample. Simultaneously, the feature
sequences can be assigned taxonomy, typically at the
kingdom, phylum, class, order, family, genus, and species
levels, providing a dimensionality reduction perspective on
the microbiota.

In general, 16S rDNA amplicon sequencing can only be
used to obtain information about taxonomic composition.

However, many available software packages have been
developed to predict potential functional information. The
principle behind this prediction is to link the 16S rDNA
sequences or taxonomy information with functional descrip-
tions in literature. PICRUSt (Langille et al., 2013), which is
based on the OTU table of the Greengenes database
(McDonald et al., 2011), could be used to predict the
metagenomic functional composition (Zheng et al., 2019) of
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways (Kanehisa and Goto, 2000). The newly developed
PICRUSt2 software package (https://github.com/picrust/
picrust2) can directly predict metagenomic functions based
on an arbitrary OTU/ASV table. The R package Tax4Fun
(Asshauer et al., 2015) can predict KEGG functional capa-
bilities of microbiota based on the SILVA database (Quast
et al., 2013). The functional annotation of prokaryotic taxa
(FAPROTAX) pipeline performs functional annotation based
on published metabolic and ecological functions such as
nitrate respiration, iron respiration, plant pathogen, and ani-
mal parasites or symbionts, making it useful for environ-
mental (Louca et al., 2016), agricultural (Zhang et al., 2019),
and animal (Ross et al., 2018) microbiome research. Bug-
Base is an extended database of Greengenes used to pre-
dict phenotypes such as oxygen tolerance, Gram staining,
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Figure 2. Workflow of commonly used methods for amplicon (A) and metagenomic (B) sequencing. Blue, orange, and green

blocks represent input, intermediate, and output files, respectively. The text next to the arrow represents the method, with frequently

used software shown in parentheses. Taxonomic and functional tables are collectively referred to as feature tables. Please see

Table 1 for more information about the software listed in this figure.
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Table 1. Introduction to software for amplicon and metagenomic analysis

Name Link Description and advantages Reference

QIIME http://qiime.org The most highly cited and comprehensive amplicon analysis
pipeline, providing hundreds of scripts for analyzing various
data types and visualizations

(Caporaso
et al., 2010)

QIIME 2 https://qiime2.org
https://github.com/
YongxinLiu/
QIIME2ChineseManual

This next-generation amplicon pipeline provides integrated
command lines and GUI, and supports reproducible analysis
and big data. Provides interactive visualization and Chinese
tutorial documents and videos

(Bolyen et al.,
2019)

USEARCH http://www.drive5.com/
usearch

https://github.com/
YongxinLiu/
UsearchChineseManual

Alignment tool includes more than 200 subcommands for
amplicon analysis with a small size (1 Mb), cross-platform,
high-speed calculation, and free 32-bit version. The 64-bit
version is commercial ($1485)

(Edgar, 2010)

VSEARCH https://github.com/
torognes/vsearch

A free USEARCH-like software tool. We recommend using it
alone or in addition to USEARCH. Available as a plugin in
QIIME 2

(Rognes
et al., 2016)

Trimmomatic http://www.usadellab.org/
cms/index.php?page=
trimmomatic

Java based software for quality control of metagenomic raw
reads

(Bolger et al.,
2014)

Bowtie 2 http://bowtie-bio.
sourceforge.net/bowtie2

Rapid alignment tool used to remove host contamination or for
quantification

(Langmead
and
Salzberg,
2012)

MetaPhlAn2 https://bitbucket.org/
biobakery/metaphlan2

Taxonomic profiling tool with a marker gene database from more
than 10,000 species. The output is relative abundance of
strains

(Truong et al.,
2015)

Kraken 2 https://ccb.jhu.edu/
software/kraken2

A taxonomic classification tool that uses exact k-mer matches to
the NCBI database, high accuracy and rapid classification, and
outputs reads counts for each species

(Wood et al.,
2019)

HUMAnN2 https://bitbucket.org/
biobakery/humann2

Based on the UniRef protein database, calculates gene family
abundance, pathway coverage, and pathway abundance from
metagenomic or metatranscriptomic data. Provide species’
contributions to a specific function

(Franzosa
et al., 2018)

MEGAN https://github.com/
husonlab/megan-ce

http://www-ab.informatik.
uni-tuebingen.de/
software/megan6

A GUI, cross-platform software for taxonomic and functional
analysis of metagenomic data. Supports many types of
visualizations with metadata, including scatter plot, word
clouds, Voronoi tree maps, clustering, and networks

(Huson et al.,
2016)

MEGAHIT https://github.com/voutcn/
megahit

Ultra-fast and memory-efficient metagenomic assembler (Li et al.,
2015)

metaSPAdes http://cab.spbu.ru/
software/spades

High-quality metagenomic assembler but time-consuming and
large memory requirement

(Nurk et al.,
2017)

MetaQUAST http://quast.sourceforge.
net/metaquast

Evaluates the quality of metagenomic assemblies, including N50
and misassemble, and outputs PDF and interactive HTML
reports

(Mikheenko
et al., 2016)

MetaGeneMark http://exon.gatech.edu/
GeneMark/

Gene prediction in bacteria, archaea, metagenome and
metatranscriptome. Support Linux/MacOSX system. Provides
webserver for online analysis

(Zhu et al.,
2010)

Prokka http://www.
vicbioinformatics.com/
software.prokka.shtml

Provides rapid prokaryotic genome annotation, calls
metaProdigal (Hyatt et al., 2012) for metagenomic gene
prediction. Outputs nucleotide sequences, protein sequences,
and annotation files of genes

(Seemann,
2014)

CD-HIT http://weizhongli-lab.org/
cd-hit

Used to construct non-redundant gene catalogs (Fu et al.,
2012)

Salmon https://combine-lab.github.
io/salmon

Provides ultra-fast quantification of reads counts of genes using a
k-mer-based method

(Patro et al.,
2017)
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and pathogenic potential (Ward et al., 2017); this database is
mainly used in medical research (Mahnert et al., 2019).

Metagenomic analysis

Compared to amplicon, shotgun metagenome can provide
functional gene profiles directly and reach a much higher
resolution of taxonomic annotation. However, due to the
large amount of data, the fact that most software is only
available for Linux systems, and the large amount of com-
puting resources are needed to perform analysis. To facili-
tate software installation and maintenance, we recommend
using the package manager Conda with BioConda channel
(Grüning et al., 2018) to deploy metagenomic analysis
pipelines. Since metagenomic analysis is computationally
intensive, it is better to run multiple tasks/samples in parallel,
which requires software such as GNU Parallel for queue
management (Tange, 2018).

The Illumina HiSeqX/NovaSeq system often produces
PE150 reads for metagenomic sequencing, whereas reads
generated by BGI-Seq500 are in PE100 mode. The first
crucial step in metagenomic analysis is quality control and
the removal of host contamination from raw reads, which
requires the KneadData pipeline (https://bitbucket.org/
biobakery/kneaddata) or a combination of Trimmomatic
(Bolger et al., 2014) and Bowtie 2 (Langmead and Salzberg,
2012). Trimmomatic is a flexible quality-control software
package for Illumina sequencing data that can be used to
trim low-quality sequences, library primers and adapters.
Reads mapped to host genomes using Bowtie 2 are treated
as contaminated reads and filtered out. KneadData is an
integrated pipeline, including Trimmomatic, Bowtie 2, and
related scripts that can be used for quality control, to remove
host-derived reads, and to output clean reads (Fig. 2B).

The main step in metagenomic analysis is to convert
clean data into taxonomic and functional tables using reads-
based and/or assembly-based methods. The reads-based
methods align clean reads to curated databases and output
feature tables (Fig. 2B). MetaPhlAn2 is a commonly used
taxonomic profiling tool that aligns metagenome reads to a
pre-defined marker-gene database to perform taxonomic
classification (Truong et al., 2015). Kraken 2 performs exact
k-mer matching to sequences within the NCBI non-redun-
dant database and uses lowest common ancestor (LCA)

algorithms to perform taxonomic classification (Wood et al.,
2019). For a review about benchmarking 20 tools of taxo-
nomic classification, please see Ye et al. (2019). HUMAnN2
(Franzosa et al., 2018), the widely used functional profiling
software, can also be used to explore within- and between-
sample contributional diversity (species’ contributions to a
specific function). MEGAN (Huson et al., 2016) is a cross-
platform graphical user interface (GUI) software that per-
forms taxonomic and functional analyses (Table 1). In addi-
tion, various metagenomic gene catalogs are available,
including catalogs curated from the human gut (Li et al.,
2014; Pasolli et al., 2019; Tierney et al., 2019), the mouse
gut (Xiao et al., 2015), the chicken gut (Huang et al., 2018),
the cow rumen (Stewart et al., 2018; Stewart et al., 2019),
the ocean (Salazar et al., 2019), and the citrus rhizosphere
(Xu et al., 2018). These customized databases can be used
for taxonomic and functional annotation in the appropriate
field of study, allowing efficient, precise, rapid analysis.

Assembly-based methods assemble clean reads into
contigs using tools such as MEGAHIT or metaSPAdes
(Fig. 2B). MEGAHIT is used to assemble large, complex
metagenome datasets quickly using little computer memory
(Li et al., 2015), while metaSPAdes can generate longer
contigs but requires more computational resources (Nurk
et al., 2017). Genes present in assembled contigs are then
identified using metaGeneMark (Zhu et al., 2010) or Prokka
(Seemann, 2014). Redundant genes from separately
assembled contigs must be removed using tools such as
CD-HIT (Fu et al., 2012). Finally, a gene abundance
table can be generated using alignment-based tools such as
Bowtie 2 or alignment-free methods such as Salmon (Patro
et al., 2017). Millions of genes are normally present in a
metagenomic dataset. These genes must be combined into
functional annotations, such as KEGG Orthology (KO),
modules and pathways, representing a form of dimensional
reduction (Kanehisa et al., 2016).

In addition, metagenomic data can be used to mine gene
clusters or to assemble draft microbe genomes. The anti-
SMASH database is used to identify, annotate, and visualize
gene clusters involved in secondary metabolite biosynthesis
(Blin et al., 2018). Binning is a method that can be used to
recover partial or complete bacterial genomes in metage-
nomic data. Available binning tools include CONCOCT (Al-
neberg et al., 2014), MaxBin 2 (Wu et al., 2015), and

Table 1 continued

Name Link Description and advantages Reference

metaWRAP https://github.com/bxlab/
metaWRAP

Binning pipeline includes 140 tools and supports conda install,
default binning by MetaBAT, MaxBin, and CONCOCT. Provides
refinement, quantification, taxonomic classification and
visualization of bins

(Uritskiy
et al., 2018)

DAS Tool https://github.com/cmks/
DAS_Tool

Binning pipeline that integrates five binning software packages
and performs refinement

(Sieber et al.,
2018)
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MetaBAT2 (Kang et al., 2015). Binning tools cluster contigs
into different bins (draft genomes) based on tetra-nucleotide
frequency and contig abundance. Reassembly is performed
to obtain better bins. We recommend using a binning pipe-
line such as MetaWRAP (Uritskiy et al., 2018) or DAStool
(Sieber et al., 2018), which integrate several binning soft-
ware packages to obtain refined binning results and more
complete genomes with less contamination. These pipelines
also supply useful scripts for evaluation and visualization.
For a more comprehensive review on metagenomic experi-
ments and analysis, we recommend Quince et al. (2017).

STATISTICAL ANALYSIS AND VISUALIZATION

The most important output files from amplicon and metage-
nomic analysis pipeline are taxonomic and functional table-
s (Figs. 2 and 3). The scientific questions that researchers
could answer using the techniques include the following:
Which microbes are present in the microbiota? Do different
experimental groups show significant differences in alpha-
and beta-diversity? Which species, genes, or functional
pathways are biomarkers of each group? To answer these
questions, methods are needed for both overall and details
statistical analysis and visualization. Overall visualization
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Figure 3. Overview of statistical and visualization methods for feature tables. Downstream analysis of microbiome feature

tables, including alpha/beta-diversity (A/B), taxonomic composition (C), difference comparison (D), correlation analysis (E), network

analysis (F), classification of machine learning (G), and phylogenetic tree (H). Please see Table 2 for more details.
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Table 2. Introduction to various analysis and visualization methods

Method Scientific question Visualization Description and example reference

Alpha
diversity

Within-sample diversity Boxplot Distribution (Edwards et al., 2015) or significant
difference (Zhang et al., 2019) of alpha diversity among
groups (Fig. 3A)

Rarefaction
curve

Sample diversity changes with sequencing depth or
evaluation of sequencing saturation (Beckers et al.,
2017)

Venn diagram Common or unique taxa (Ren et al., 2019)

Beta diversity Distance among samples or
groups

Unconstrained
PCoA scatter
plot

Major differences of samples showing group differences
(Fig. 3B) or gradient changes with time (Zhang et al.,
2018b)

Constrained
PCoA scatter
plot

Major differences among groups (Zgadzaj et al., 2016;
Huang et al., 2019)

Dendrogram Hierarchical clustering of samples (Chen et al., 2019)

Taxonomic
composition

Relative abundance of features Stacked bar plot Taxonomic composition of each sample (Beckers et al.,
2017) or group (Jin et al., 2017) (Fig. 3C)

Flow or alluvial
diagram

Relative abundance (RA) of taxonomic changes among
seasons (Smits et al., 2017) or time-series (Zhang
et al., 2018b)

Sanky diagram A variety of Venn diagrams showing changes in RA and
common or unique features among groups (Smits
et al., 2017)

Difference
comparison

Significantly different biomarkers
between groups

Volcano plot A variety of scatter plots showing P-value, RA, fold
change, and number of differences (Shi et al., 2019a)

Manhattan plot A variety of scatter plots showing P-values, taxonomy,
and highlighting significantly different biomarkers
(Zgadzaj et al., 2016) (Fig. 3D)

Extend bar plot Bar plot of RA combined with difference and confidence
intervals (Parks et al., 2014)

Correlation
analysis

Correlation between features and
sample metadata

Scatter plot with
linear fitting

Shows changes in features with time (Metcalf et al.,
2016) or relationships with other numeric metadata
(Fig. 3E)

Corrplot Correlation coefficient or distance triangular matrix
visualized by color and/or shape (Zhang et al., 2018b)

Heatmap RA of features that change with time (Subramanian
et al., 2014)

Network
analysis

Global view correlation of features Colored based
on taxonomy or
modules

Finding correlation patterns of features based on
taxonomy (Fig. 3F) and/or modules (Jiao et al., 2016)

Colors highlight
important
features

Highlighting important features and showing their
positions and connections (Wang et al., 2018b)

Machine
learning

Classification groups or
regression analysis for numeric
metadata prediction

Heatmap Colored block showing classification results (Fig. 3G)
(Wilck et al., 2017) or feature patterns in a time series
(Subramanian et al., 2014).

Bar plot Feature importance, RA (Zhang et al., 2019), and
increase in mean squared error (Subramanian et al.,
2014).

Treemap Phylogenetic tree or taxonomy
hierarchy

Phylogenetic
tree or
cladogram

Phylogenetic tree (Fig. 3H) shows relationship of OTUs
or species (Levy et al., 2018). Taxonomic cladogram
highlighting interesting biomarkers (Segata et al.,
2011).
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can be used to explore differences in alpha/beta- diversity
and taxonomic composition in a feature table. Details anal-
ysis could involve identifying biomarkers via comparison,
correlation analysis, network analysis, and machine learning
(Fig. 3). We will discuss these methods below and provide
examples and references to facilitate such studies (Fig. 3
and Table 2).

Alpha diversity evaluates the diversity within a sample,
including richness and evenness measurements. Several
software packages can be used to calculate alpha diversity,
including QIIME, the R package vegan (Oksanen et al.,
2007), and USEARCH. The alpha diversity values of sam-
ples in each group could be visually compared using box-
plots (Fig. 3A). The differences in alpha diversity among or
between groups could be statistically evaluated using Anal-
ysis of Variance (ANOVA), Mann-Whitney U test, or Kruskal-
Wallis test. It is important to note that P-values should be
adjusted if each group is compared more than twice. Other
visualization methods for alpha diversity indices are descri-
bed in Table 2.

Beta diversity evaluates differences in the microbiome
among samples and is normally combined with dimensional
reduction methods such as principal coordinate analysis
(PCoA), non-metric multidimensional scaling (NMDS), or
constrained principal coordinate analysis (CPCoA) to obtain
visual representations. These analyses can be implemented
in the R vegan package and visualized in scatter plots
(Fig. 3B and Table 2). The statistical differences between
these beta-diversity indices can be computed using

permutational multivariate analysis of variance (PERMA-
NOVA) with the adonis() function in vegan (Oksanen et al.,
2007).

Taxonomic composition describes the microbiota that are
present in a microbial community, which is often visualized
using a stacked bar plot (Fig. 3C and Table 2). For simplicity,
the microbiota is often shown at the phylum or genus level in
the plot.

Difference comparison is used to identify features (such
as species, genes, or pathways) with significantly different
abundances between groups using Welch’s t-test, Mann-
Whitney U test, Kruskal-Wallis test, or tools such as
ALDEx2, edgeR (Robinson et al., 2010), STAMP (Parks
et al., 2014), or LEfSe (Segata et al., 2011). The results of
difference comparison can be visualized using a volcano
plot, Manhattan plot (Fig. 3D), or extended error bar plot
(Table 3). It is important to note that this type of analysis is
prone to produce false positives due to increases in the
relative abundance of some features and decreases in other
features. Several methods have been developed to obtain
taxonomic absolute abundance in samples, such as the
integration of HTS and flow cytometric enumeration (Van-
deputte et al., 2017), and the integration of HTS with spike-in
plasmid and quantitative PCR (Tkacz et al., 2018; Guo et al.,
2020; Wang et al., 2020b).

Correlation analysis is used to reveal the associations
between taxa and sample metadata (Fig. 3E). For example,
it is used to identify associations between taxa and envi-
ronmental factors, such as pH, longitude and latitude, and

Table 2 continued

Method Scientific question Visualization Description and example reference

Circular tree map Shows features in a hierarchy color bubble (Carrión
et al., 2019)

Table 3. Useful websites or tools for reproducible analysis

Resource Links Description

GSA http://gsa.big.ac.cn HTS data deposition and sharing. Fast data transfer, interfaces in both
Chinese and English, automated submission, technical support via
email or QQ group, and widely recognized by international journals

Qiita https://qiita.ucsd.edu Platform for amplicon data deposition, analysis, and cross-study
comparisons

MGnify https://www.ebi.ac.uk/metagenomics Webserver for amplicon and metagenomic data deposition, sharing,
analysis, and cross-study comparisons

gcMeta https://gcmeta.wdcm.org Webserver for amplicon and metagenomic data analysis, deposition, and
sharing

R Markdown https://rmarkdown.rstudio.com Uses a productive notebook interface to weave together narrative text
and code to produce an elegantly formatted report in HTML or PDF
format. Is becoming increasingly popular in microbiome research

R Graph Gallery https://www.r-graph-gallery.com R code for 42 chart types

GitHub https://github.com Online code-saving and sharing platforms with version control systems.
Supports searching
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clinical indices, or to identify key environmental factors that
affect microbiota and dynamic taxa in a time series (Edwards
et al., 2018).

Network analysis explores the co-occurrence of features
from a holistic perspective (Fig. 3F). The properties of a
correlation network might represent potential interactions
between co-occurring taxa or functional pathways. Correla-
tion coefficients and significant P-values could be computed
using the cor.test() function in R or more robust tools that are
suitable for compositional data such as the SparCC (sparse
correlations for compositional data) package (Kurtz et al.,
2015). Networks could also be visualized and analyzed
using R library igraph (Csardi and Nepusz, 2006), Cytoscape
(Saito et al., 2012), or Gephi (Bastian et al., 2009). There are
several good examples of network analysis, such as studies
exploring the distribution of phylum or modules (Fan et al.,
2019) or showing trends at different time points (Wang et al.,
2019).

Machine learning is a branch of artificial intelligence that
learns from data, identifies patterns, and makes decisions
(Fig. 3G). In microbiome research, machine learning is used
for taxonomic classification, beta-diversity analysis, binning,
and compositional analysis of particular features. Commonly
used machine learning methods include random forest
(Vangay et al., 2019; Qian et al., 2020), Adaboost (Wilck
et al., 2017), and deep learning (Galkin et al., 2018) to
classify groups by selecting biomarkers or regression anal-
ysis to show experimental condition-dependent changes in
biomarker abundance (Table 2).

Treemap is widely used for phylogenetic tree construction
and for taxonomic annotation and visualization of the
microbiome (Fig. 3H). Representative amplicon sequences
are readily used for phylogenetic analysis. We recommend
using IQ-TREE (Nguyen et al., 2014) to quickly build high-
confidence phylogenetic trees using big data and online
visualization using iTOL (Letunic and Bork, 2019). Annota-
tion files of tree can easily be generated using the R script
table2itol (https://github.com/mgoeker/table2itol). In addition,
we recommend using GraPhlAn (Asnicar et al., 2015) to
visualize the phylogenetic tree or hierarchical taxonomy in
an attractive cladogram.

In addition, researchers may be interested in examining
microbial origin to address issues such as the origin of gut
microbiota and river pollution, as well as for forensic testing.
FEAST (Shenhav et al., 2019) and SourceTracker (Knights
et al., 2011) were designed to unravel the origins of microbial
communities. If researchers would like to focus on the reg-
ulatory relationship between genetic information from the
host and microorganisms (Wang et al., 2018a), genome-
wide association analysis (GWAS) might be a good choice
(Wang et al., 2016).

REPRODUCIBLE ANALYSIS

Reproducible analysis requires that researchers submit their
data and code along with their publications instead of merely

describing their methods. Reproducibility is critical for
microbiome analysis because it is impossible to reproduce
results without raw data, detailed sample metadata, and
analysis codes. If the readers can run the codes, they will
better understand what has been done in the analyses. We
recommend that researchers share their sequencing data,
metadata, analysis codes, and detailed statistical reports
using the following steps:

Upload and share raw data and metadata in a data
center

Amplicon or metagenomic sequencing generates a large
volume of raw data. Normally, raw data must be uploaded to
data centers such as NCBI, EBI, and DDBJ during publica-
tion. In recent years, several repositories have also been
established in China to provide data storage and sharing
services. For example, the Genome Sequence Archive
(GSA) established by the Beijing Institute of Genomics
Chinese Academy of Sciences (Wang et al., 2017; Mem-
bers, 2019) has a lot of advantages (Table 3). We recom-
mend that researchers upload raw data to one of these
repositories, which not only provides backup but also meets
the requirements for publication. Several journals such as
Microbiome require that the raw data should be deposited in
repositories before submitting the manuscript.

Share pipeline scripts with other researchers

Pipeline scripts could help reviewers or readers evaluate the
reproducibility of experimental results. We provide sample
pipeline scripts for amplicon and metagenome analyses at
https://github.com/YongxinLiu/Liu2020ProteinCell. The run-
ning environment and software version used in analysis
should also be provided to help ensure reproducibility. If
Conda is used to deploy software, the command “conda env
export environment_name > environment.yaml” can gener-
ate a file containing both the software used and various
versions for reproducible usage. For users who are not
familiar with command lines, webservers such as Qiita
(Gonzalez et al., 2018), MGnify (Mitchell et al., 2020), and
gcMeta (Shi et al., 2019b) could be used to perform analysis.
However, webservers are less flexible than the command
line mode because they provide fewer adjustable steps and
parameters.

Provide a detailed statistical and visualization reports

The tools used for statistical analysis and visualization of a
feature table include Excel, GraphPad, and Sigma plot, but
these are commercial software tools, and are difficult to
quickly reproduce the results. We recommend using tools
such as R Markdown or Python Notebooks to trace all
analysis codes and parameters and storing them in a version
control management system such as GitHub (Table 3).
These tools are free, open-source, cross-platform, and easy-
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to-use. We recommend that researchers record all scripts
and results of statistical analysis and visualization in R
markdown files. An R markdown document is a fully repro-
ducible report that includes codes, tables, and figures in
HTML/PDF format. This work mode would greatly improve
the efficiency of microbiome analysis and make the analysis
process transparent and easier to understand. R visualiza-
tion codes can refer to R Graph Gallery (Table 3). The input
files (feature tables + metadata), analysis notebook (*.Rmd),
and output results (figures, tables, and HTML reports) of the
analysis can be uploaded to GitHub, which would allow
peers to repeat your analyses or reuse your analysis codes.
ImageGP (http://www.ehbio.com/ImageGP) provides more
than 20 statistical and visualization methods, making it a
good choice for researchers without a background in R.

NOTES AND PERSPECTIVES

It is worth noting that experimental operations have a far
greater impact on the results of a study than the pipeline
chosen for analysis (Sinha et al., 2017). It is better to record
detailed experimental processes as metadata, which
includes sampling method, time, location, operators, DNA
extraction kit, batch, primers, and barcodes. The metadata
can be used for downstream analyses and help research-
ers to determine whether these operational differences
contribute to false-positive results (Costea et al., 2017).
Some specific experimental steps could be used to provide a
unique perspective on microbiome analysis. For example,
the development and use of methods to remove the host
DNA can effectively increase the proportion of the micro-
biome in plant endophytes (Carrión et al., 2019) and human
respiratory infection samples (Charalampous et al., 2019). A
large amount of relic DNA in soil can be physically removed
with propidium monoazide (Carini et al., 2016). In addition,
when using samples with low microbial biomass, research-
ers must be particularly careful to avoid false-positive results
due to contamination (de Goffau et al., 2019). For these
situations, DNA-free water should be used as a negative
control. In human microbiome studies, the major differences
in microbiome composition among individuals are due to
factors such as diet, lifestyle, and drug use, such that the
heritability is less than 2% (Rothschild et al., 2018). For
recommendations about information that should be col-
lected, please refer to minimum information about a marker
gene sequence (MIMARKS) and minimum information about
metagenome sequence (Field et al., 2008; Yilmaz et al.,
2011), minimum information about a single amplified gen-
ome (MISAG) and a metagenome-assembled genome
(MIMAG) of bacteria and archaea (Bowers et al., 2017), and
minimum information about an uncultivated virus genome
(Roux et al., 2019). In the early stage of microbiome
research, data-driven studies provide basic components and
conceptual frame of microbiome, however, with the devel-
opment of experimental tools, more hypothesis-driven

studies are needed to dissect the causality of microbiome
and host phenotypes.

Shotgun metagenomic sequencing could provide insights
into a microbial community structure at strain-level, but it is
difficult to recover high-quality genome (Bishara et al., 2018).
Single-cell genome sequencing shows very promising
applications in microbiome research (Xu and Zhao, 2018).
Based on flow cytometry and single-cell sequencing, Meta-
Sort could recover high-quality genomes from sorted sub-
metagenome (Ji et al., 2017). Recently developed third-
generation sequencing techniques have been used for
metagenome analysis, including Pacific Biosciences (Pac-
Bio) single molecule real time sequencing and the Oxford
Nanopore Technologies sequencing platform (Bertrand
et al., 2019; Stewart et al., 2019; Moss et al., 2020). With the
improvement in sequencing data quality and decreasing
costs, these techniques will lead to a technological revolution
in the field of microbiome sequencing and bring microbiome
research into a new era.

CONCLUSION

In this review, we discussed methods for analyzing amplicon
and metagenomic data at all stages, from the selection of
sequencing methods, analysis software/pipelines, statistical
analysis and visualization to the implementation of repro-
ducible analysis. Other methods such as metatranscriptome,
metaproteome, and metabolome analysis may provide a
better perspective on the dynamics of the microbiome, but
these methods have not been widely accepted due to their
high cost and the complex experimental and analysis
methods required. With the further development of these
technologies in the future, a more comprehensive view of the
microbiome could be obtained.
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