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Abstract

team might go about using them in practice.

Technologies and methods to speed up the production of systematic reviews by reducing the manual labour
involved have recently emerged. Automation has been proposed or used to expedite most steps of the systematic
review process, including search, screening, and data extraction. However, how these technologies work in practice
and when (and when not) to use them is often not clear to practitioners. In this practical guide, we provide an
overview of current machine learning methods that have been proposed to expedite evidence synthesis. We also
offer guidance on which of these are ready for use, their strengths and weaknesses, and how a systematic review
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Background

Evidence-based medicine (EBM) is predicated on the idea
of harnessing the entirety of the available evidence to in-
form patient care. Unfortunately, this is a challenging aim
to realize in practice, for a few reasons. First, relevant evi-
dence is primarily disseminated in unstructured, natural
language articles describing the conduct and results of
clinical trials. Second, the set of such articles is already
massive and continues to expand rapidly [1].

A now outdated estimate from 1999 suggests that con-
ducting a single review requires in excess of 1000 h of
(highly skilled) manual labour [2]. More recent work es-
timates that conducting a review currently takes, on
average, 67 weeks from registration to publication [3].
Clearly, existing processes are not sustainable: reviews of
current evidence cannot be [4]produced efficiently and
in any case often go out of date quickly once they are
published . The fundamental problem is that current
EBM methods, while rigorous, simply do not scale to
meet the demands imposed by the voluminous scale of
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the (unstructured) evidence base. This problem has been
discussed at length elsewhere [5-8].

Research on methods for semi-automating systematic
reviews via machine learning and natural language pro-
cessing now constitutes its own (small) subfield, with an
accompanying body of work. In this survey, we aim to
provide a gentle introduction to automation technologies
for the non-computer scientist. We describe the current
state of the science and provide practical guidance on
which methods we believe are ready for use. We also dis-
cuss how a systematic review team might go about using
them, and the strengths and limitations of each. We do
not attempt an exhaustive review of research in this bur-
geoning field. Perhaps unsurprisingly, multiple systematic
reviews of such efforts already exist [9, 10].

Instead, we identified machine learning systems that
are available for use in practice at the time of writing,
through manual screening of records in SR Toolbox' on
January 3, 2019, to identify all systematic review tools
which incorporated machine learning [11]. SR Toolbox
is a publicly available online catalogue of software tools
to aid systematic review production and is regularly up-
dated via regular literature surveillance plus direct sub-
missions from tool developers and via social media. We
have not described machine learning methods from aca-
demic papers unless a system to enact them has been
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made available; we likewise have not described (the very
large number of) software tools for facilitating system-
atic reviews unless they make use of machine learning.

Box 1 Glossary of terms used in systematic review
automation

Machine learning: computer algorithms which ‘learn’ to perform a
specific task through statistical modelling of (typically large amounts of)
data

Natural language processing: computational methods for automatically
processing and analysing ‘natural’ (i.e. human) language texts

Text classification: automated categorization of documents into groups
of interest

Data extraction: the task of identifying key bits of structured information
from texts

Crowd-sourcing: decomposing work into micro-tasks to be performed
by distributed workers

Micro-tasks: discrete units of work that together complete a larger
undertaking

Semi-automation: using machine learning to expedite tasks, rather than
complete them

Human-in-the-loop: workflows in which humans remain involved, rather
than being replaced

Supervised learning: estimating model parameters using manually
labelled data

Distantly supervised: learning from pseudo, noisy ‘labels’ derived
automatically by applying rules to existing databases or other structured
data

Unsupervised: learning without any labels (e.g. clustering data)

Machine learning and natural language
processing methods: an introduction

Text classification and data extraction: the key tasks for
reviewers

The core natural language processing (NLP)
technologies used in systematic reviews are fext
classification and data extraction. Text classification
concerns models that can automatically sort documents
(here, article abstracts, full texts, or pieces of text within
these) into predefined categories of interest (e.g. report
of RCT vs. not). Data extraction models attempt to
identify snippets of text or individual words/numbers
that correspond to a particular variable of interest (e.g.
extracting the number of people randomized from a
clinical trial report).

The most prominent example of text classification in
the review pipeline is abstract screening: determining
whether individual articles within a candidate set meet
the inclusion criteria for a particular review on the basis
of their abstracts (and later full texts). In practice, many
machine learning systems can additionally estimate a
probability that a document should be included (rather
than a binary include/exclude decision). These
probabilities can be used to automatically rank
documents from most to least relevant, thus potentially
allowing the human reviewer to identify the studies to
include much earlier in the screening process.
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Following the screening, reviewers extract the data
elements that are relevant to their review. These are
naturally viewed as individual data extraction tasks. Data
of interest may include numerical data such as study
sample sizes and odds ratios, as well as textual data, e.g.
snippets of text describing the study randomization
procedure or the study population.

Risk of bias assessment is interesting in that it entails
both a data extraction task (identifying snippets of text
in the article as relevant for bias assessment) and a final
classification of an article as being at &igh or low risk for
each type of bias assessed [12].

State-of-the-art methods for both text classification
and data extraction use machine learning (ML)
techniques, rather than, e.g. rule-based methods. In ML,
one writes programs that specify parameterized models
to perform particular tasks; these parameters are then
estimated using (ideally large) datasets. In practice, ML
methods resemble statistical models used in epidemio-
logical research (e.g. logistic regression is a common
method in both disciplines).

We show a simple example of how machine learning
could be used to automate the classification of articles
as being RCTs or not in Fig. 1. First, a training set of
documents is obtained. This set will be manually
labelled for the variable of interest (e.g. as an ‘included
study’ or ‘excluded study’).

Next, documents are vectorized, i.e. transformed into
high-dimensional points that are represented by se-
quences of numbers. A simple, common representation
is known as a bag of words (see Fig. 2). In this approach,
a matrix is constructed in which rows are documents
and each column corresponds to a unique word. Docu-
ments may then be represented in rows by 1’s and O,
indicating the presence or absence of each word, re-
spectively.” The resultant matrix will be sparse (i.e. con-
sist mostly of 0’s and relatively few 1’s), as any individual
document will contain a small fraction of the full
vocabulary.?

Next, weights (or coefficients) for each word are
‘learned’ (estimated) from the training set. Intuitively for
this task, we want to learn which words make a
document more, or less, likely to be an RCT. Words
which lower the likelihood of being an RCT should have
negative weights; those which increase the likelihood
(such as ‘random’ or ‘randomly’) should have positive
weights. In our running example, the model coefficients
correspond to the parameters of a logistic regression
model. These are typically estimated (‘learned’) via
gradient descent-based methods.

Once the coefficients are learned, they can easily be
applied to a new, unlabelled document to predict the
label. The new document is vectorized in an identical
way to the training documents. The document vector is
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large set of manually
labeled documents

SYSTEM IN USE

unlabelled document

vector representation

vector representation

Fig. 1 Classifying text using machine learning, in this example logistic regression with a ‘bag of words' representation of the texts. The system is
‘trained’, learning a coefficient (or weight) for each unique word in a manually labelled set of documents (typically in the 1000s). In use, the
learned coefficients are used to predict a probability for an unknown document

coefficients learned’

vector multiplied by classification
learned coefficients made
then transformed to

probability

then multiplied* by the previously learned coefficients,
and transformed to a probability via the sigmoid
function.

Many state-of-the-art systems use more complex
models than logistic regression (and in particular more
sophisticated methods for representing documents [13],
obtaining coefficients [14], or both [15]). Neural
network-based approaches in particular have re-emerged
as the dominant model class. Such models are composed
of multiple layers, each with its own set of parameters.
We do not describe these methods in detail here,” but
the general principle is the same: patterns are learned
from numerical representations of documents with
known labels, and then, these patterns can be applied to
new documents to predict the label. In general, these
more complex methods achieve (often modest) improve-
ments in predictive accuracy compared with logistic re-
gression, at the expense of computational and
methodological complexity.

Methods for automating (or semi-automating) data ex-
traction have been well explored, but for practical use
remain less mature than automated screening technolo-
gies. Such systems typically operate over either abstracts
or full-text articles and aim to extract a defined set of
variables from the document.

At its most basic, data extraction can be seen as a type
of text classification problem, in which individual words
(known as tokens) are classified as relevant or not

within a document. Rather than translating the full
document into a vector, a data extraction system might
encode the word itself, plus additional contextual
information (for example, nearby surrounding words
and position in the document).

Given such a vector representation of the word at
position ¢ in document x (notated as x;), an extraction
system should output a label that indicates whether or
not this word belongs to a data type of interest (i.e.
something to be extracted). For example, we may want
to extract study sample sizes. Doing so may entail
converting numbers written in English to numerals and
then labelling (or ‘tagging’) all numbers on the basis of
feature vectors that encode properties that might be
useful for making this prediction (e.g. the value of the
number, words that precede and follow it, and so on).
This is depicted in Fig. 3. Here, the ‘target’ token (‘100’)
is labelled as 1, and others as 0.

Such a token by token classification approach often
fails to capitalize on the inherently structured nature of
language and documents. For example, consider a model
for extracting snippets of text that describe the study
population, intervention/comparators, and outcomes
(i.e. PICO elements), respectively. Labelling words
independently of one another would fail to take into
account the observation that adjacent words will have a
tendency to share designations: if the word at position ¢
is part of a description of the study population, that
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“bag of words” model (feature matrix) manual labels
Article ramipril | random | randomized | range | ranitidine | systematic | ... i | Relevant?
1 1 1 Pl
2 1 1 b1
3 1 1 o
Coefficients | 0.30 8.2 12.34 -0.03 | 0.34 -8.10

Fig. 2 Bag of words modelling for classifying RCTs. Top left: Example of bag of words for three articles. Each column represents a unique word in
the corpus (a real example would likely contain columns for 10,000s of words). Top right: Document labels, where 1 = relevant and 0 = irrelevant.
Bottom: Coefficients (or weights) are estimated for each word (in this example using logistic regression). In this example, high +ve weights will
increase the predicted probability that an unseen article is an RCT where it contains the words ‘random’ or ‘randomized’. The presence of the
word ‘systematic’ (with a large negative weight) would reduce the predicted probability that an unseen document is an RCT

substantially raises the odds that the word at position ¢
+ 1 is as well.

In ML nomenclature, this is referred to as a structured
classification problem. More specifically, assigning the
words in a text to categories is an instance of sequence
tagging. Many models for problems with this structure
have been developed. The conditional random field
(CRF) is amongst the most prominent of these [18].
Current state-of-the-art models are based on neural net-
works, and specifically recurrent neural networks, or
RNNs. Long short-term memory networks (LSTMs) [19]
combined with CRFs (LSTM-CRFs) [19-21] have in par-
ticular shown compelling performance on such tasks
generally, for extraction of data from RCTs specifically
[22, 23].

Machine learning tools available for use in
practice

Search

The rapidly expanding biomedical literature has made
search an appealing target for automation. Two key
areas have been investigated to date: filtering articles by
study design and automatically finding relevant articles
by topic. Text classification systems for identifying RCTs
are the most mature, and we regard them as ready for

use in practice. Machine learning for identifying RCTs
has already been deployed in Cochrane; Cochrane
authors may access this technology via the Cochrane
Register of Studies [24].°

Two validated systems are freely available for general
use [16, 25]. Cohen and colleagues have released RCT
tagger,” a system which estimates the probability that
PubMed articles are RCTs [25]. The team validated the
performance on a withheld portion of the same dataset,
finding the system discriminated accurately between
RCTs and non-RCTs (area under the receiver operating
characteristics curve (AUROC) = 0.973). A search portal
is available freely at their website, which allows the user
to select a confidence threshold for their search.

Our own team has produced RobotSearch®, which
aims to replace keyword-based study filtering. The sys-
tem uses neural networks and support vector machines,
and was trained on a large set of articles with crowd-
sourced labels by Cochrane Crowd [16]. The system was
validated on and achieved state-of-the-art discriminative
performance (AUROC = 0.987), reducing the number of
irrelevant articles retrieved by roughly half compared
with the keyword-based Cochrane Highly Sensitive
Search Strategy, without losing any additional RCTs.
The system may be freely used by uploading an RIS file
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Fig. 3 Schematic of a typical data extraction process. The above illustration concerns the example task of extracting the study sample size. In
general, these tasks involve labelling individual words. The word (or ‘token’) at position t is represented by a vector. This representation may
encode which word is at this position and likely also communicates additional features, e.g. whether the word is capitalized or if the word is
(inferred to be) a noun. Models for these kinds of tasks attempt to assign labels all T words in a document and for some tasks will attempt to
maximize the joint likelihood of these labels to capitalize on correlations between adjacent labels

to our website; a filtered file containing only the RCTs is
then returned.

Study design classification is appealing for machine
learning because it is a single, generalizable task:
filtering RCTs is common across many systematic
reviews. However, finding articles which meet other
topic-specific inclusion criteria is review-specific and
thus much more difficult—consider that it is unlikely
that a systematic review with identical inclusion criteria
would have been performed before, and even where it
has been, it might yield up to several dozen articles to
use a training data, compared with the thousands
needed in a typical machine learning system. We discuss
how a small set of relevant articles (typically obtained
through screening a proportion of abstracts retrieved by
a particular search) can seed a machine learning system
to identify other relevant articles below.

A further application of machine learning in search is
as a method for producing a semantic search engine, i.e.
one in which the user can search by concept rather than
by keyword. Such a system is akin to searching PubMed
by MeSH terms (index terms from a standardized
vocabulary, which have traditionally been applied
manually by PubMed staff). However, such a manual
approach has the obvious drawback of requiring
extensive and ongoing manual annotation effort,
especially in light of the exponentially increasing volume
of articles to index. Even putting costs aside, manual
annotation delays the indexing process, meaning the

most recent articles may not be retrievable. Thalia is a
machine learning system (based on CRFs, reviewed
above) that automatically indexes new PubMed articles
daily for chemicals, diseases, drugs, genes, metabolites,
proteins, species, and anatomical entities. This allows
the indexes to be updated daily and provides a user
interface to interact with the concepts identified [26].

Indeed, as of October 2018, PubMed itself has adopted
a hybrid approach, where some articles are assigned
MeSH terms automatically using their Medical Text
Indexer (MTI) system [27], which uses a combination of
machine learning and manually crafted rules to assign
terms without human intervention [28].

Screening

Machine learning systems for abstract screening have
reached maturity; several such systems with high levels
of accuracy are available for reviewers to use. In all of
the available systems, human reviewers first need to
screen a set of abstracts and then review the system
recommendations. Such systems are thus semi-
automatic, i.e. keep humans ‘in-the-loop’. We show a
typical workflow in Fig. 4.

After conducting a conventional search, retrieved
abstracts are uploaded into the system (e.g. using the
common RIS citation format). Next, a human reviewer
manually screens a sample (often random) of the
retrieved set. This continues until a ‘sufficient’ number
of relevant articles have been identified such that a text
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Conventional database

search conducted
Search retrieval

exported as RIS file

Unseen abstracts re-ordered
so reviewer is presented with
those predicted most relevant™
first

Fig. 4 Typical workflow for semi-automated abstract screening. The asterisk indicates that with uncertainty sampling, the articles which are
predicted with least certainty are presented first. This aims to improve the model accuracy more efficiently

System trains text
classifier on abstracts
labelled so far

System predicts

probability of relevance
for all unseen abstracts

J

classifier can be trained. (Exactly how many positive
examples will suffice to achieve good predictive
performance is an empirical question, but a conservative
heuristic is about half of the retrieved set.) The system
uses this classifier to predict the relevance of all
unscreened abstracts, and these are reordered by rank.
The human reviewer is hence presented with the most
relevant articles first. This cycle then continues, with the
documents being repeatedly re-ranked as additional ab-
stracts are screened manually, until the human reviewer
is satisfied that no further relevant articles are being
screened.

This is a variant of active learning (AL) [29]. In AL
approaches, the model selects which instances are to be
labelled next, with the aim of maximizing predictive
performance with minimal human supervision. Here, we
have outlined a certainty-based AL criterion, in which
the model prioritizes for labelling citations that it
believes to be relevant (under its current model
parameters). This AL approach is appropriate for the
systematic review scenario, in light of the relatively small
number of relevant abstracts that will exist in a given set
under consideration. However a more standard, general
approach is uncertainty sampling, wherein the model
asks the human to label instances it is least certain
about.

The key limitation of automated abstract screening is
that it is not clear at which point it is ‘safe’ for the
reviewer to stop manual screening. Moreover, this point
will vary across reviews. Screening systems tend to rank
articles by the likelihood of relevance, rather than simply
providing  definitive, dichotomized classifications.
However, even low ranking articles have some non-zero
probability of being relevant, and there remains the

possibility of missing a relevant article by stopping too
early. (It is worth noting that all citations not retrieved
via whatever initial search strategy is used to retrieve the
candidate pool of articles implicitly assign zero probabil-
ity to all other abstracts; this strong and arguably unwar-
ranted assumption is often overlooked.) Empirical
studies have found the optimal stopping point can vary
substantially between different reviews; unfortunately,
the optimal stopping point can only be determined de-
finitively in retrospect once all abstracts have been
screened. Currently available systems include Abstrackr
[30], SWIFT-Review,” EPPI reviewer [31], and RobotA-
nalyst [32] (see Table 1).

Data extraction

There have now been many applications of data
extraction to support systematic reviews; for a relatively
recent survey of these, see [9]. Yet despite advances,
extraction technologies remain in formative stages and
are not readily accessible by practitioners. For systematic
reviews of RCTs, there exist only a few prototype
platforms that make such technologies available (ExaCT
[33] and RobotReviewer [12, 34, 35] being among these).
For systematic reviews in the basic sciences, the UK
National Centre for Text Mining (NaCTeM) has created
a number of systems which use structured models to
automatically extract concepts including genes and
proteins, yeasts, and anatomical entities [36], amongst
other ML-based text mining tools."

ExaCT and RobotReviewer function in a similar way.
The systems are trained on full-text articles, with sen-
tences being manually labelled'! as being relevant (or
not) to the characteristics of the studies. In practice,
both systems over-retrieve candidate sentences (e.g.
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Table 1 Examples of machine learning systems available for use in systematic reviews

Example tools

Comments

- Validated machine learning filters available for identifying
RCTs and suitable for fully automatic use

- Conventional topic-specific keyword search strategy still
needed

- No widely available tools for non-RCT design currently

Allows search of PubMed for concepts (i.e. chemicals, diseases,
drugs, genes, metabolites, proteins, species and anatomical
entities)

- Screening systems automatically sort a search retrieval by
relevance

+ RobotAnalyst and SWIFT-Review also allow topic modelling,
where abstracts relating to similar topics are automatically
grouped, allowing the user to explore the search retrieval.

- These prototype systems automatically extract data elements
(e.g. sample sizes, descriptions of PICO elements) from free-
texts.

- Automatic assessment of biases in reports of RCTs

Search— RobotSearch (https://robotsearch.vortext.systems)

finding RCTs  Cochrane Register of Studies (https.//community.cochrane.org/help/
tools-and-software/crs-cochrane-register-studies)
RCT tagger (http://arrowsmith.psych.uic.edu/cgi-bin/arrowsmith_uic/
RCT_Tagger.cqgi)

Search— Thalia (http://nactem-copious.man.ac.uk/Thalia/)

literature

exploration

Screening Abstrackr (http://abstrackr.cebm.brown.edu) [30]
EPPI reviewer (https://eppi.ioe.ac.uk/cms/er4) [31]
RobotAnalyst (http://www.nactem.ac.uk/robotanalyst/) [32]
SWIFT-Review (https://www.sciome.com/swift-review/)
Colandr (https://www.colandrapp.com)
Rayyan (https://rayyan.qcri.org)

Data ExaCT (http://exactdemoiit.nrc.ca)

extraction RobotReviewer (https://robotreviewer.vortext.systems)
NaCTeM text mining tools for automatically extracting concepts
relating to genes and proteins (NEMine), yeast metabolites (Yeast
MetaboliNER), and anatomical entities (AnatomyTagger) (http://www.
nactem.ac.uk/software.php)

Bias RobotReviewer (https://robotreviewer.vortext.systems)

assessment

- System recommended for semi-automatic use (i.e. with
human reviewer checking and correcting the ML
suggestions)

ExaCT retrieves the five sentences predicted most likely,
when the relevant information will generally reside in
only one of them). The purpose of this behaviour is to
maximize the likelihood that at least one of the sen-
tences will be relevant. Thus, in practice, both systems
would likely be used semi-automatically by a human re-
viewer. The reviewer would read the candidate sen-
tences, choose those which were relevant, or consult the
full-text paper where no relevant text was identified.

ExaCT uses RCT reports in HTML format and is
designed to retrieve 21 characteristics relating to study
design and reporting based on the CONSORT criteria.
ExaCT additionally contains a set of rules to identify the
words or phrase within a sentence which describe the
characteristic of interest. In their evaluation, the ExaCT
team found their system had very high recall (72% to
100% for the different variables collected) when the 5
most likely sentences were retrieved.

RobotReviewer takes RCT reports in PDF format and
automatically retrieves sentences which describe the
PICO (the population, intervention, comparator, and
outcomes), and also text describing trial conduct
relevant to biases (including the adequacy of the random
sequence generation, the allocation concealment, and
blinding, using the domains from the Cochrane Risk of
Bias tool). RobotReviewer additionally classifies the
article as being as to whether it is at low’ risk of bias or
not for each bias domain.

Validation studies of RobotReviewer have found that
the article bias classifications (i.e. low’ versus ‘high/

unclear’ risk of bias) are reasonable but less accurate
than those in published Cochrane reviews [12, 15].
However, the sentences identified were found to be
similarly relevant to bias decisions as those in Cochrane
reviews [12]. We therefore recommend that the system
is used with manual input; that the output is treated as a
suggestion rather than the final bias assessment. A
webtool is available which highlights the text describing
biases, and suggests a bias decision aiming to expedite
the process compared with fully manual bias assessment.

One obstacle to better models for data extraction has
been a dearth of training data for the task. Recall from
above the ML systems rely on manual labels to estimate
model parameters. Obtaining labels on individual words
within documents to train extraction models is an
expensive exercise. EXaCT, for example, was trained on
a small set (132 total) of full-text articles. RobotReviewer
was trained using a much larger dataset, but the ‘labels’
were induced semi-automatically, using a strategy known
as ‘distant supervision’ [35]. This means the annotations
used for training were imperfect, thus introducing noise
to the model. Recently, Nye et al. released the EBM-NLP
dataset [23], which comprises ~ 5000 abstracts of RCT
reports manually annotated in detail. This may provide
training data helpful for moving automated extraction
models forward.

Synthesis
Although software tools that support the data synthesis
component of reviews have long existed (especially for
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performing meta-analysis), methods for automating this
are beyond the capabilities of currently available ML and
NLP tools. Nonetheless, research into these areas con-
tinues rapidly, and computational methods may allow
new forms of synthesis unachievable manually, particu-
larly around visualization [37, 38] and automatic
summarization [39, 40] of large volumes of research
evidence.

Conclusions

The torrential volume of unstructured published
evidence has rendered existing (rigorous, but manual)
approaches to evidence synthesis increasingly costly and
impractical. Consequently, researchers have developed
methods that aim to semi-automate different steps of
the evidence synthesis pipeline via machine learning.
This remains an important research direction and has
the potential to dramatically reduce the time required to
produce standard evidence synthesis products.

At the time of writing, research into machine learning
for systematic reviews has begun to mature, but many
barriers to its practical use remain. Systematic reviews
require very high accuracy in their methods, which may
be difficult for automation to attain. Yet accuracy is not
the only barrier to full automation. In areas with a
degree of subjectivity (e.g. determining whether a trial is
at risk of bias), readers are more likely to be reassured
by the subjective but considered opinion of an expert
human versus a machine. For these reasons, full
automation remains a distant goal at present. The
majority of the tools we present are designed as ‘human-
in-the-loop’ systems: Their user interfaces allowing
human reviewers to have the final say.

Most of the tools we encountered were written by
academic groups involved in research into evidence
synthesis and machine learning. Very often, these groups
have produced prototype software to demonstrate a
method. However, such prototypes do not age well: we
commonly encountered broken web links, difficult to
understand and slow user interfaces, and server errors.

For the research field, moving from the research
prototypes currently available (e.g. RobotReviewer,
ExaCT) to professionally maintained platforms remains
an important problem to overcome. In our own
experience as an academic team in this area, the
resources needed for maintaining professional grade
software (including bug fixes, server maintenance, and
providing technical support) are difficult to obtain from
fixed term academic grant funding, and the lifespan of
software is typically many times longer than a grant
funding period. Yet commercial software companies are
unlikely to dedicate their own resources to adopting
these machine learning methods unless there was a
substantial demand from users.
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Nonetheless, for the pioneering systematic review
team, many of the methods described can be used now.
Users should expect to remain fully involved in each
step of the review and to deal with some rough edges of
the software. Searching technologies that expedite
retrieval of relevant articles (e.g. by screening out non-
RCTs) are the most fully realized of the ML models
reviewed here and are more accurate than conventional
search filters. Tools for screening are accessible via us-
able software platforms (Abstrackr, RobotAnalyst, and
EPPI reviewer) and could safely be used now as a second
screener [31] or to prioritize abstracts for manual re-
view. Data extraction tools are designed to assist the
manual process, e.g. drawing the user’s attention to rele-
vant text or making suggestions to the user that they
may validate, or change if needed. Piloting of some of
these technologies by early adopters (with appropriate
methodological caution) is likely the key next step to-
ward gaining acceptance by the community.

Endnotes

"http://systematicreviewtools.com/

*Variants of this approach include using word counts
(i.e. the presence of the word ‘trial’ three times in a
document would result in a number 3 in the associated
column) or affording greater weight to more
discriminative words (known as term frequency—inverse
document frequency, or tf-idf)

*We note that while they remain relatively common,
bag of words representations have been largely
supplanted by dense ‘embeddings’ learned by neural
networks.

“This is a dot product.

*We refer the interested reader to our brief overview
of these methods [16] for classification and to Bishop
[17] for a comprehensive, technical take.

®http://crsweb.cochrane.org

“http://arrowsmith.psych.uic.edu/cgi-bin/arrowsmith_
uic/RCT_Tagger.cgi

8https://robotsearch.vortext.systems/

®https://www.sciome.com/swift-review/

'%http://www.nactem.ac.uk/

"More precisely, RobotReviewer generated labels that
comprised our training data algorithmically.
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