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Abstract

The natural environment for plants is composed of a complex set of abiotic stresses and biotic stresses. Plant
responses to these stresses are equally complex. Systems biology approaches facilitate a multi-targeted approach
by allowing one to identify regulatory hubs in complex networks. Systems biology takes the molecular parts
(transcripts, proteins and metabolites) of an organism and attempts to fit them into functional networks or models
designed to describe and predict the dynamic activities of that organism in different environments. In this review,
research progress in plant responses to abiotic stresses is summarized from the physiological level to the molecular
level. New insights obtained from the integration of omics datasets are highlighted. Gaps in our knowledge are
identified, providing additional focus areas for crop improvement research in the future.

Reviews
Recent advances in biotechnology have dramatically
changed our capabilities for gene discovery and func-
tional genomics. For the first time, we can now obtain a
holistic “snapshot” of a cell with transcript, protein and
metabolite profiling. Such a “systems biology” approach
allows for a deeper understanding of physiologically
complex processes and cellular function [1]. New mod-
els can be formed from the plethora of data collected
and lead to new hypotheses generated from those
models.
Understanding the function of genes is a major chal-

lenge of the post-genomic era. While many of the func-
tions of individual parts are unknown, their function
can sometimes be inferred through association with
other known parts, providing a better understanding of
the biological system as a whole. High throughput
omics technologies are facilitating the identification of
new genes and gene function. In addition, network
reconstructions at the genome-scale are key to quantify-
ing and characterizing the genotype to phenotype rela-
tionships [2].
In this review, we summarize recent progress on sys-

tematic analyses of plant responses to abiotic stress to
include transcriptomics, metabolomics, proteomics, and

other integrated approaches. Due to space limitations,
we try to emphasize important perspectives, especially
from what systems biology and omics approaches have
provided in recent research on environmental stresses.

Plant responses to the environment are complex
Plants are complex organisms. It is difficult to find an
estimate of the total number of cells in a plant. Esti-
mates of the number of cells in the adaxial epidermal
layer and palisade mesophyll of a simple Arabidopsis
leaf are approximately 27,000 and 57,000 cells, respec-
tively [3]. Another estimate of the adaxial side of the
epidermal layer of the 7th leaf of Arabidopsis was close
to 100,000 cells [4] per cm2 of leaf area. An Arabidopsis
plant can grow as large as 14 g fresh weight with a leaf
area of 258 cm2 (11 g fresh weight) [5]. Thus, we esti-
mate that a single Arabidopsis plant could have approxi-
mately 100 million cells (range of 30 to 150 million cells
assuming 2.4 to 11 million cells per g fresh weight). A
one million Kg redwood tree could possibly have 70 tril-
lion cells assuming a cell size 100 times larger than an
Arabidopsis cell. Combine that with developmental
changes, cell differentiation and interactions with the
environment and it is easy to see that there are an infi-
nite number of permutations to this complexity.
There is additional complexity within the cell with

multiple organelles, interactions between nuclear, plasti-
dial and mitochondrial genomes, and between cellular
territories that behave like symplastically isolated
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domains that are able to exchange transcription factors
controlling gene expression and developmental stages
across the plasmodesmata. A typical plant cell has more
than 30,000 genes and an unknown number of proteins,
which can have more than 200 known post-translational
modifications (PTMs). The molecular responses of cells
(and plants) to their environment are extremely
complex.

Environmental limits to crop production
In 1982, Boyer indicated that environmental factors may
limit crop production by as much as 70% [6]. A 2007
FAO report stated that only 3.5% of the global land area
is not affected by some environmental constraint (see
Table three point seven in http://www.fao.org/docrep/
010/a1075e/a1075e00.htm). While it is difficult to get
accurate estimates of the effects of abiotic stress on crop
production (see different estimates in Table 1), it is evi-
dent that abiotic stress continues to have a significant
impact on plants based upon the percentage of land
area affected and the number of scientific publications
directed at various abiotic stresses (Table 1). If anything

the environmental impacts are even more significant
today; yields of the “big 5” food crops are expected to
decline in many areas in the future due to the continued
reduction of arable land, reduction of water resources
and increased global warming trends and climate change
[7].
This growing concern is reflected in the increasing

number of publications focused on abiotic stresses. For
example, since the pivotal review of systems biology by
Kitano in 2002 [1], the number of papers published on
abiotic stress in plants using a systems biology approach
has increased exponentially (Figure 1).

Multiple factors limit plant growth
Fundamentally, plants require energy (light), water, car-
bon and mineral nutrients for growth. Abiotic stress is
defined as environmental conditions that reduce growth
and yield below optimum levels. Plant responses to
abiotic stresses are dynamic and complex [8,9]; they are
both elastic (reversible) and plastic (irreversible).
The plant responses to stress are dependent on the

tissue or organ affected by the stress. For example,

Table 1 Estimates of the impacts of abiotic stresses on crop production and published research

Stress Type % of global land area
affected*

% of global rural land area
affected**

Number of
Publications***

Abiotic Stress 96.5 35,363

Water 4819

Deficit or Drought 64 16 4137

Flooding or Anoxia 13 10 682

Temperature 9715

Cold 57 26 3798

Chilling 187

Freezing 350

High or heat 5380

Light 7659

Low 3081

High 4578

Chemical/Soil 50 12391

Salt or salinity 6 6 3498

Mineral deficiency or low fertility 9 39 222

Mineral toxicity 437

Acid soil 15 3646

Air pollutants

Ozone 1369

Sulfur dioxide 378

NOx oxide 2001

Elevated CO2 840

Miscellaneous (e.g. wind, mechanical,
etc.)

779

*based on FAO World Soil Resources Report 2000 ftp://ftp.fao.org/agl/agll/docs/wsr.pdf.

** based on Tables three point six and three point seven of 2007 FAO Report http://www.fao.org/docrep/010/a1075e/a1075e00.htm

*** data based on simple searches in PubMed between 2001 and July 7, 2011.
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transcriptional responses to stress are tissue or cell spe-
cific in roots and are quite different depending on the
stress involved [10]. In addition, the level and duration
of stress (acute vs chronic) can have a significant effect
on the complexity of the response [11,12].
Water deficit inhibits plant growth by reducing water

uptake into the expanding cells, and alters enzymatically
the rheological properties of the cell wall; for example,
by the activity of ROS (reactive oxygen species) on cell
wall enzymes [8]. In addition, water deficit alters the cell
wall nonenzymatically; for example, by the interaction of
pectate and calcium [13]. Furthermore, water conduc-
tance to the expanding cells is affected by aquaporin
activity and xylem embolism [14-17]. The initial growth

inhibition by water deficit occurs prior to any inhibition
of photosynthesis or respiration [18,19].
The growth limitation is in part due to the fundamen-

tal nature of newly divided cells encasing the xylem in
the growing zone [20,21]. These cells act as a resistance
to water flow to the expanding cells in the epidermis
making it necessary for the plant to develop a larger
water potential gradient. Growth is limited by the plant’s
ability to osmotically adjust or conduct water. The epi-
dermal cells can increase the water potential gradient by
osmotic adjustment, which may be largely supplied by
solutes from the phloem. Such solutes are supplied by
photosynthesis that is also supplying energy for growth
and other metabolic functions in the plant. With long-

Figure 1 The number of publications per year related to systems biology and abiotic stress. Key words used in the search of PubMed
included: plant, systems biology, and abiotic stress (including stress sub-terms; e.g. drought or water deficit or dehydration). *The number for
the year 2011 was estimated by doubling the 6-month value.
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term stress, photosynthesis declines due to stomatal lim-
itations for CO2 uptake and increased photoinhibition
from difficulties in dissipating excess light energy [12].
One of the earliest metabolic responses to abiotic

stresses and the inhibition of growth is the inhibition of
protein synthesis [22-25] and an increase in protein
folding and processing [26]. Energy metabolism is
affected as the stress becomes more severe (e.g. sugars,
lipids and photosynthesis) [12,27,28]. Thus, there are
gradual and complex changes in metabolism in response
to stress.

Central regulators limit key plant processes
The plant molecular responses to abiotic stresses involve
interactions and crosstalk with many molecular path-
ways [29]. Systems biology and omics approaches have
been used to elucidate some of the key regulatory path-
ways in plant responses to abiotic stress.
One of the earliest signals in many abiotic stresses

involve ROS and reactive nitrogen species (RNS), which
modify enzyme activity and gene regulation [30-32].
ROS signaling in response to abiotic stresses and its
interactions with hormones has been thoroughly
reviewed [32]. ROS and RNS form a coordinated net-
work that regulates many plant responses to the envir-
onment; there are a large number of studies on the
oxidative effects of ROS on plant responses to abiotic
stress, but only a few studies documenting the nitrosa-
tive effects of RNS [30].
Hormones are also important regulators of plant

responses to abiotic stress (Figure 2). The two most
important are abscisic acid (ABA) and ethylene [33].
ABA is a central regulator of many plant responses to
environmental stresses, particularly osmotic stresses
[9,34-36]. Its signaling can be very fast without involving
transcriptional activity; a good example is the control of
stomatal aperture by ABA through the biochemical reg-
ulation of ion and water transport processes [35]. There
are slower responses to ABA involving transcriptional
responses that regulate growth, germination and protec-
tive mechanisms.
Recently, the essential components of ABA signaling

have been identified, and their mode of action was clari-
fied [37]. The current model of ABA signaling includes
three core components, receptors (PYR/PYL/RCAR),
protein phosphatases (PP2C) and protein kinases
(SnRK2/OST1) [38,39]. The PYR/PYL/RCAR proteins
were identified as soluble ABA receptors by two inde-
pendent groups [38,39]. The 2C-type protein phospha-
tases (PP2C) including ABI1 and ABI2, were first
identified from the ABA-insensitive Arabidopsis mutants
abi1-1 and abi2-1, and they act as global negative regu-
lators of ABA signaling [40]. SNF1-related protein
kinase 2 (SnRK2) is a family of protein kinases isolated

as ABA-activated protein kinases [41,42]. In Arabidopsis,
three members of this family, SRK2D/SnRK2.2, SRK2E/
OST1/SnRK2.6, and SRK2I/SnRK2.3, regulate ABA sig-
naling positively and globally, as shown in the triple
knockout mutant srk2d srk2e srk2i (srk2dei)/snrk2.2
snrk2.3 snrk2.6, which lacks ABA responses [43]. The
PYR/PYL/RCAR - PP2C - SnRK2 complex plays a key
role in ABA perception and signaling.
Studies of the transcriptional regulation of dehydration

and salinity stresses have revealed both ABA-dependent
and ABA-independent pathways [44]. Cellular dehydra-
tion under water limited conditions induces an increase
in endogenous ABA levels that trigger downstream tar-
get genes encoding signaling factors, transcription fac-
tors, metabolic enzymes, and others [44]. In the
vegetative stage, expression of ABA-responsive genes is
mainly regulated by bZIP transcription factors (TFs)
known as AREB/ABFs, which act in an ABA-responsive-
element (ABRE) dependent manner [45-47]. Activation
of ABA signaling cascades result in enhanced plant tol-
erance to dehydration stress. In contrast, a dehydration-
responsive cis-acting element, DRE/CRT sequence and
its DNA binding ERF/AP2-type TFs, DREB1/CBF and
DREB2A, are related to the ABA-independent dehydra-
tion and temperature responsive pathways [44]. DREB1/
CBFs function in cold-responsive gene expression
[48,49], whereas DREB2s are involved in dehydration-
responsive and heat-responsive gene expression [50].
Ethylene is also involved in many stress responses

[51-53], including drought, ozone, flooding (hypoxia and
anoxia), heat, chilling, wounding and UV-B light
[31,33,53]. Ethylene signaling is well defined [51,52], and
will not be discussed in detail here. There are known
interactions between ethylene and ABA during drought
[31], fruit ripening [54,55], and bud dormancy [56]. All
of these interactions make the plant response to stress
very complex [12,31,52].
In yeast, the well-documented central regulators of

protein synthesis and energy are SnRK1 (Snf1/AMPK),
TOR1 and GCN2 [57-60]. These proteins are largely
controlled by the phosphorylation of enzymes; all three
are protein kinases acting as key hubs in the coordina-
tion of metabolism during stressful conditions [61]. In
plants, TOR activity is inhibited by osmotic stress and
ABA [62] and GCN2 activity is stimulated by UV-light,
amino acid starvation, ethylene, and cold stress [63].
SnRK1 responds to energy depletion, such as low light,
nutrient deprivation or hypoxic conditions [64,65], and
interacts with both glucose and ABA signaling pathways
[66]. One of the results of this coordinated response is
the inhibition of protein synthesis.
Many abiotic stresses directly or indirectly affect the

synthesis, concentration, metabolism, transport and
storage of sugars. Soluble sugars act as potential
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signals interacting with light, nitrogen and abiotic
stress [67-69] to regulate plant growth and develop-
ment; at least 10% of Arabidopsis genes are sugar-
responsive [68]. Mutant analysis has revealed that
sugar signaling interacts with ethylene [70], ABA
[71,72], cytokinins [73], and light [74,75]. In grapevine,
sugar and ABA signaling pathways interact to control
sugar transport. An ASR (ABA, stress-, and ripening-
induced) protein isolated from grape berries is upregu-
lated synergistically by ABA and sugars, and upregu-
lates the expression of a hexose transporter [76].
VVSK1, a GSK3 type protein kinase, is also induced by

sugars and ABA, and upregulates the expression of
several hexose transporters [77].
Stresses such as sugar starvation and lack of light sti-

mulate SnRK1 activity ([64]. Suc-P synthase (SPS), 3-
hydroxy-3-methylglutaryl-CoA reductase, nitrate reduc-
tase, and trehalose-6-P synthase are negatively regulated
by SnRK1 phosphorylation [78], indicating that SnRK1
modulates metabolism by phosphorylating key metabolic
enzymes. Post-translational redox modulation of ADPG-
pyrophosphorylase, a key control of starch synthesis, by
SnRK1 provides an interesting example of interactions
between phosphorylation, redox control and sugar
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metabolism [79]. In Arabidopsis, SnRK1 kinase activity
is itself increased by GRIK1 and GRIK2, which phos-
phorylate a threonine residue of the SnRK1 catalytic
subunit [78]. SnRK2 interacts with ABA for the control
of stomatal aperture and participates in the regulation
of plant primary metabolism. Constitutive expression of
SnRK2.6 drastically boosts sucrose and total soluble
sugar levels in leaves, presumably by controlling SPS
expression [80].

Systems biology approach to abiotic stress
In the post-genomic era, comprehensive analyses using
three systematic approaches or omics have increased
our understanding of the complex molecular regulatory
networks associated with stress adaptation and toler-
ance. The first one is ‘transcriptomics’ for the analysis of
coding and noncoding RNAs, and their expression pro-
files. The second one is ‘metabolomics’ that is a power-
ful tool to analyze a large number of metabolites. The
third one is ‘proteomics’ in which protein and protein
modification profiles offer an unprecedented under-
standing of regulatory networks. Protein complexes
involved in signaling have been analyzed by a proteo-
mics approach [81,82]. Integration of the different omics
analyses facilitates abiotic stress signaling studies allow-
ing for more robust identifications of molecular targets
for future biotechnological applications in crops and
trees.

Co-expression analyses identify regulatory hubs
An important application of transcriptomics data is co-
expression analysis of target genes using on-line analyti-
cal tools, such as ATTED-II (reviewed by [83]). This
approach is very promising for understanding gene-gene
correlations and finding master genes in target
conditions.
In a series of pioneering papers, Hirai et al. [84,85]

identified MYB transcription factors regulating glucosi-
nolate biosynthesis in Arabidopsis in response to S and
N deficiency using an integrated transcriptomics and
metabolomics approach. Genes and metabolites in glu-
cosinolate metabolism were found to be coordinately
regulated [84]. Co-expression analysis was used to iden-
tify two MYB transcription factors that positively regu-
late glucosinolate metabolism [85]. Then a knock out
mutant and ectopic expression of one of the transcrip-
tion factors was used to validate its positive role in glu-
cosinolate metabolism. Previously unidentified genes
were assigned to this biosynthetic pathway and a regula-
tory network model was constructed [85].
Mao et al. [86] performed a gene co-expression net-

work analysis of 1094 microarrays of Arabidopsis using
a non-targeted approach. They identified 382 modules
in this network. The top three modules with the most

nodes were: photosynthesis, response to oxidative stress
and protein synthesis. Many of the modules also
involved responses to environmental stresses. They con-
structed a cold-induced gene network from a subset of
microarrays. The response to auxin stimulus was the
most over-represented of the 18 significant modules.
Carrera et al. [87] used the InferGene application to

construct a regulatory model of the Arabidopsis gen-
ome. They used datasets from 1,486 microarray experi-
ments. Ten genes were predicted to be the most central
regulatory hubs influencing the largest number of genes.
Included in this set were transcription factor genes
involved in auxin (KAN3), gibberellin (MYB29), abscisic
acid (MYB121), ethylene (ERF1), and stress responses
(ANAC036). They computed the top 12 gene subnet-
works; four of these were related to biotic and abiotic
stresses. Eighty-five percent of the predicted interactions
of the 25% most connected transcription factors were
validated in AtRegNet, the Arabidopsis thaliana Regula-
tor Network http://arabidopsis.med.ohio-state.edu/more-
Network.html.
Lorenz et al [88] investigated the drought response of

loblolly pine roots and identified a number of hubs in
the transcriptional network. Highly ranked hubs
included thioredoxin, an inositol transporter, cardiolipin
synthase/phosphatidyl transferase, 9-cis-expoxycarote-
noid dioxygenase, zeatin O-glucosyltransferase and a
SnRK2 kinase. These genes are involved in phospholipid
metabolism, ABA biosynthesis and signaling, and cytoki-
nin metabolism; they appear to be important in stress
mediation.
Weston et al [89] used weighted co-expression analy-

sis to define six modules for Arabidopsis responses to
abiotic stress. Two hubs in the common response mod-
ule were an ankyrin-repeat protein and genes involved
in Ca signaling. They created a compendium of genomic
signatures and linked them to their co-expression analy-
sis. Using the same approach, they extended their ana-
lyses to the responses of three different plant species to
heat and light [90]. Species-specific responses were
found involving heat tolerance, heat-shock proteins,
ROS, oligosaccharide metabolism and photosynthesis.

Time-series analyses reveal multiple phases in
stress responses
Time-series analyses allow one to distinguish between
primary and secondary responses to stress. In a compre-
hensive time-series transcriptomics analysis of 7 abiotic
stresses on different Arabidopsis organs [28], a core set
of genes (50% were transcription factors) of non-specific
responses for all stresses were elucidated. Included in
this set were the AZF2, ZAT10 and ZAT12 transcrip-
tion factors. This initial response is thought to be
involved in the readjustment of energy homeostasis in
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response to the stress. With time (after 1 h) more
stress-specific profiles developed.
Sun et al [91] applied a complexity metric to a set of

time series data of Arabidopsis with 9 different abiotic
stresses. They found that genes with a higher complexity
metric had longer 5’ intergenic regions and a greater
density of cis-regulatory motifs than the genes with a
low complexity metric. Many of the cis-regulatory
motifs identified were associated with previously charac-
terized stress responses.
Vanderauwera et al. [92] investigated the effects of

hydrogen peroxide (H2O2) signaling during high light
stress using microarray analyses. They found that H2O2

was not only heavily involved in signaling in high light
stress, but also salinity, water deficit, heat and cold
stress. H2O2 was a key regulator of small and 70 kD
heat shock proteins and many genes of the anthocyanin
metabolic pathway. Anthocyanins appear to play an
important role as antioxidants in plants. A specific
UDP-glycosyltransferase (UGT74E2) was highly regu-
lated by H2O2. In a subsequent study [93], UGT74E2
responded quickly to H2O2 and glycosylated indole-3-
butyric acid (IBA) modifying auxin homeostasis, plant
morphology and improving stress tolerance to salinity
and water deficit. Furthermore, auxin was found to
interact with ABA, increasing the ABA sensitivity of the
plant. Silencing a poly(ADP-ribose) polymerase
improved high light stress tolerance in Arabidopsis
[94,95]. Part of the improved abiotic stress tolerance
was ascribed to improved energy-use efficiency and
reduced oxidative stress [94,95].
Kusano et al. [96] conducted a time-series experiment

on the effects of UV-B light on Arabidopsis using both
metabolomics and transcriptomics analyses. They found
that plants responded in two phases with an upregula-
tion of primary metabolites in the first phase and the
induction of protective secondary metabolites, especially
phenolics, in the second phase. The induction of pheno-
lics corresponded to transcripts involved in the phenyl-
propanoid pathway, but the transcripts for primary
metabolism were less consistent indicating that this
pathway may be regulated by other mechanisms (e.g.
kinases).
The transcriptomic response to drought can vary with

the time of day [97]. These responses seem to interact
with hormonal and other stress pathways that naturally
vary during the course of the day. A smaller set of core
genes were identified that responded at all times of the
day. This set was compared to two previous studies and
was whittled down to just 19 genes, including a NF-YB
transcription factor, several PP2Cs, a CIPK7, and a sul-
fate transporter.
Drought stress studies and microarray analyses of

three different genotypes of poplar clones grown in two

different locations revealed epigenetic regulation to the
environment [98]. The tree clones that had a longer his-
tory in the environment showed greater changes in
DNA methylation, thereby influencing their response to
drought.
Shoot tip growth of grapevines was found to be much

more sensitive to osmotic stress than gene expression in
a time-series experiment of the effects of gradual osmo-
tic stress on grapevine [27]. Proteomics data indicated
that changes in protein expression preceded and were
not well correlated with gene expression (G.R. Cramer,
unpublished results). The integration of transcriptomics
data and metabolomics data indicated distinct differ-
ences of the responses of salinity and an isosmotic water
deficit [27]. Drought-stressed plants induced greater
responses in processes needed for osmotic adjustment
and protection against ROS and photoinhibition. Salinity
induced greater responses in processes involved in
energy metabolism, ion transport, protein synthesis and
protein fate. A comparison to similar short-term stresses
[11] indicated that a gradual, chronic stress response
was more complex than an acute stress response.
The effect of water-deficit on Cabernet Sauvignon ber-

ries (a red wine grape) in the field was studied using
transcriptomics, proteomics and metabolomics [99-102].
Integrated analyses confirmed that the phenylpropanoid
pathway (including anthocyanin and stilbene biosynth-
esis) was upregulated by water deficit in a tissue-specific
manner in the skins of the berries. Other metabolic
pathways in the berries were affected by water deficit
including ABA, amino acid, carotenoid, lipid, sugar and
acid metabolism. Most of these changes were associated
with improved quality characteristics of the fruit.
Likewise, Zamboni et al. [103] investigated berry

development and withering in grapevine at the tran-
scriptomics, proteomics and metabolomics levels. A
multistep hypothesis-free approach from four develop-
mental stages and three withering intervals, with inte-
gration achieved using a hierarchical clustering strategy
(multivariate O2PLS technique), identified stage-specific
functional networks of linked transcripts, proteins and
metabolites, providing important insights into the key
molecular processes that determine wine quality. A
hypothesis-driven approach identified transcript, protein
and metabolite variables involved in the molecular
events underpinning withering, which predominantly
reflected a general stress response. Berry ripening and
withering are characterized by the accumulation of sec-
ondary metabolites such as acylated anthocyanins, but
withering also involves the activation of osmotic and
oxidative stress response genes and the production of
stilbenes and taxifolin.
Usadel et al. [104] investigated the effects of cold tem-

peratures over time using transcriptomics, metabolomics
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and enzyme activities. They found some enzyme activ-
ities and metabolites changed rapidly, whereas others
changed more slowly. The early changes (6 h) in enzyme
activities were poorly correlated with transcript abun-
dance, but after 78 h these correlations were greatly
improved. Much of the long-term changes in metabo-
lism could be ascribed to the CBF regulon.
Caldana et al. [105] conducted a complex time-series

experiment (22 time points) with differing temperatures
and light intensities using both metabolomics and tran-
scriptomics analyses. This high-resolution time series
experiment revealed that metabolic activities respond
more quickly than transcriptional activities, indicating a
disconnect between metabolism and transcription in the
early phases of stress response and indicating that enzy-
matic activities may play a significant role. There were
common metabolic responses to the changing environ-
ment within 1 h of the change including a decrease in
energy metabolism and translation and an increase in
the transcription of genes involved in signaling cascades.
At later time points, condition-dependent metabolism
was revealed. For example, protein degradation and
energy metabolism derived from amino acids occurred
in warm temperatures and darkness. Amino acid catabo-
lism appears to fuel the TCA cycle in the absence of
photosynthesis.
Yun et al. [106] characterized the response of rice to a

mild chilling stress (10°C). They found that transcrip-
tional regulation consisted of three dynamic and com-
plex phases over 96 h. The early transcriptional phase
appeared to be triggered by oxidative signals (H2O2) and
lead to the subsequent induction of cellular defense and
rescue mechanisms. Combining temporal co-expression
data from microarrays with promoter motif enrichment
analyses and oxidative responses, transcriptional regula-
tory network models for the different response phases
were constructed. A bZIP-TGA transcription factor
module (as1/ocs/TGA), one of seven transcription factor
modules, was the most connected regulatory module in
phase one. Each of the transcription factor modules
consisted of clusters of transcription factors exhibiting
combinatorial control of the chilling regulon. The speed
of the response of this network was associated with chil-
ling tolerance. Chilling-resistant genotypes had a much
more rapid and pronounced response of this transcrip-
tional regulatory network than chilling-sensitive geno-
types. In addition, the transcription factors identified in
this study were located within known growth and stress
QTLs in the rice genome.

Integration of omics analysis identifies molecular
networks functioning in abiotic stress responses
Integrated omics analyses have markedly increased our
understanding of plant responses to various stresses.

These analyses are important for comprehensive ana-
lyses of abiotic stress responses, especially the final steps
of stress signal transduction pathways.
Integrated analyses of the transcriptome and the meta-

bolome successfully demonstrate connections between
genes and metabolites, elucidating a wide range of signal
output from ABA under dehydration [107] and the
DREB1/CBF transcription factors in response to low
temperature [108,109]. Metabolite profiling reveals that
ABA accumulates during dehydration, regulating the
accumulation of various amino acids and sugars such as
glucose and fructose. In particular, the dehydration-
inducible accumulation of BCAAs (branch-chain amino
acids), saccharopine, proline, and agmatine are corre-
lated with the dehydration-inducible expression of their
key biosynthetic genes (BCAT2, LKR/SDH, P5CS1, and
ADC2, respectively), which are regulated by endogenous
ABA [107]. In addition, metabolome analysis of trans-
genic Arabidopsis overexpressing DREB1A/CBF3 reveals
that there is a striking similarity between the low-tem-
perature regulated metabolome (monosaccharides, disac-
charides, oligosaccharides and sugar alcohols) and that
regulated by the DREB1A/CBF3 transcription factor
[108,109]. In particular, the low-temperature-inducible
accumulation of galactinol and raffinose is correlated
with the expression of the Gols3 gene, which is a direct
target of DREB1A/CBF3 [108,109]. Maruyama et al.
[109] also analyzed DREB2A overexpression, which did
not increase the level of any low-temperature regulated
metabolites in transgenic plants. Overexpression of
DREB2A-CA in transgenic plants increased their toler-
ance to dehydration stress, but only slightly increased
their tolerance to freezing stress [50]. These results indi-
cate that the increased tolerance to freezing stress in
transgenic plants overexpressing DREB1A may depend
on the accumulation of low-temperature regulated
metabolites, especially sucrose, raffinose, galactinol, and
myo-inositol. Similarly, transcriptomics and metabolo-
mics analyses of PSEUDO RESPONSE REGULATOR
(PRR) arrhythmic triple mutant revealed that the
DREB1A/CBF gene and raffinose amounts appear to be
regulated by the circadian clock, varying between day
and night as if in anticipation of the colder night tem-
peratures [110].
Comparing metabolomics between dehydration, sali-

nity, light, heat or low temperature stress have identified
metabolites that are generally important in abiotic stress
responses or are specific to each stress
[27,95,105,111,112]. In a metabolite profiling study of
Arabidopsis responses to combined dehydration and
heat stresses [95], heat stress reduced the toxicity of
proline, indicating that during the more severe com-
bined stress treatment, sucrose replaces proline in plants
as the major osmoprotectant. Comparative metabolite
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analysis between Arabidopsis responding to heat shock
and cold shock revealed that the majority of metabolites
in response to heat shock overlapped with those pro-
duced in response to cold shock [109,113]. These results
indicate that a metabolic network of compatible solutes
includes proline, monosaccharides (glucose and fruc-
tose), galactinol, and raffinose, which have an important
role in tolerance to temperature stress. Wienkoop et al.
[112] identified a RNA-binding protein (ATGRP7) that
increased in response to low temperature stress and
decreased in response to high temperature stress. Its
abundance was significantly correlated with glutamine
and proline concentrations. While raffinose and galacti-
nol concentrations were significant markers for tem-
perature responses, their response was independent of
the responses of ATGRP7, proline and glutamine.
Transcriptomics, metabolomics and enzyme activities

were integrated in a comprehensive study of K defi-
ciency [114]. Carbon and nitrogen metabolism were sig-
nificantly affected by K deficiency. This integrated
approach pinpointed that pyruvate kinase activity (not
transcription) was inhibited directly by K deficiency and
was primarily responsible for the metabolic disorders
observed.

Systematic application of omics technologies has
contributed to the development of stress-tolerant
crops in the field
Many genes affect stress tolerance, but few of the identi-
fied genes have proven useful in the field. Due to the
complexity of stress interactions and stress responses,
relevant phenotyping needs to be performed (including
field experiments) in abiotic stress studies if we are to
make significant progress [113]. The following studies
are discussed to highlight good examples of systems
biology and omics approaches that have been used to
identify key genes regulating stress tolerance and then
followed with validation of those responses and pheno-
types in multiple experiments including field conditions.
A SNAC1 gene was identified from microarray experi-

ments of stress treatments on rice [115]. SNAC1 is a
NAC transcription factor that induces the expression of
a number of stress-tolerance genes and improves the
drought and salt tolerance of rice in the field. The trans-
genic plants exhibited increased sensitivity to ABA and
reduced water loss. In another drought stress study, a
LEA (late embryogenesis abundant) gene was identified
from microarray experiments of rice and was trans-
formed and tested in the field under drought conditions
through the T3 generation [116]. Spikelet fertility
appears to be the main factor contributing to improved
yields under drought conditions.
An exhaustive screen of greater than 1500 transcrip-

tion factors in Arabidopsis identified approximately 40

transcription factors that when overexpressed, improved
stress tolerance [117]. One of these transcription factors
NF-YB1 was further characterized and shown to display
significant drought tolerance in Arabidopsis. Microarray
data of this overexpressing line showed few differences
in gene expression and the genes identified were not
known previously to be involved in drought tolerance.
This functional genomics approach provided a new
strategy for improving drought tolerance in plants. A
homolog of NF-YB1 was cloned in maize (ZmNF-YB2),
overexpressed and tested for drought tolerance in the
greenhouse and field plots. The transgenic maize lines
were more drought tolerant having increased chloro-
phyll content, photosynthesis, stomatal conductance and
grain yields. One line consistently had more than 50%
yield improvement in drought conditions over two dif-
ferent years.
Oh et al. [118] used microarrays to identify 42 AP2

transcription factors whose expressions were affected by
stress. Two of these transcription factors, AP37 and
AP59 were functionally characterized. The two tran-
scription factors are closely related but have distinct dif-
ferences in affecting rice phenotype. AP37 responded to
drought, salinity, cold and ABA; over-expression
improved stress tolerance to all three environmental
conditions. AP59 responded to drought and salinity, but
not cold or ABA, and improved stress tolerance to
drought and salinity only. Both overexpressing lines
showed improved photosynthetic efficiency under stress
conditions. Overexpression of the transcription factors
induced common and distinct sets of genes. T5 homozy-
gous overexpressing lines of AP59, but not AP37, had
yield penalties under normal paddy conditions in the
field, whereas AP37 overexpressing lines, but not AP59,
had enhanced yields under drought conditions in the
field. The reduced yields of the overexpressing lines of
AP59 were attributed to effects on spikelet development.
This study emphasizes the point that it is important to
characterize gene effects on yield under field conditions.

Mapping stress responses has provided new
insights and identified gaps in our knowledge of
abiotic stress responses
From a meta-analysis of drought-stress related papers
from the last 15 years, a complex model for plant
responses to drought stress was produced [12]. This
model details the interactions of sugars, ROS/RNS, hor-
mones (ABA, ethylene, auxins, cytokinins, salicylic acid,
gibberellin and brassinosteroids) and nitrogen metabo-
lism. It highlights the highly complex nature of stress
responses.
From this review, we have constructed a simplified

working model summarizing some of the known plant
signaling responses to abiotic stress (Figure 2). Much of
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the signaling involves phosphorylation cascades that
react quickly in the plant cell, emphasizing the need for
proteomics data as well as transcriptomics data in future
models. The PYR/PYL/RCAR-PP2C-SnRK2 pathway
illustrates that protein phosphorylation and dephosphor-
ylation are the most important factors in ABA signaling.
Similar phosphorylation and dephosphorylation pro-
cesses are involved in ethylene and other abiotic stress
signaling pathways (Figure 2). Not all connections could
be drawn in this two-dimensional figure without obscur-
ing many other connections. For example, the interac-
tions of ROS with abiotic stresses and hormones [32]
are too complex to display here. In addition, the actual
signaling response will be dependent upon the signaling
pathway present in that organ, tissue or cell at the time
of the response. One needs to use more sophisticated
bioinformatics programs like Cytoscape [119] and its
plug-ins to visualize the interactions comprehensively in
two dimensional or three-dimensional space [120] or
with time series views [121], which would allow these
data to be viewed in four dimensions.
Although there are still some technological issues that

must be solved to produce a complete picture of protein
phosphorylation, several technologies have been devel-
oped for the large-scale analysis of phosphoproteins,
known as ‘phosphoproteomics’ [122]. Mass spectrometry
analyses have identified thousands of phosphoproteins
in Arabidopsis, rice, and Medicago truncatula [123-125].
In addition, two studies have reported ABA-responsive
changes in the phosphoproteome [126,127]. Phospho-
proteomics analyses of mutants for abiotic stress signal-
ing (e.g. PP2C or SnRK) will identify the relevant
network of protein phosphorylation events in abiotic
stress signaling.
Transcriptome analysis technologies have advanced to

the point where high-through-put DNA sequencers and
high-density microarrays such as tiling arrays are readily
available. These technologies provide new opportunities
to analyze noncoding RNAs and can clarify aspects of
epigenetic regulation of gene expression [128,129]. Simi-
lar approaches [130,131] have revealed the global tran-
scriptomes of plants exposed to abiotic stresses such as
dehydration, cold, heat, high-salinity, osmotic stress, and
ABA. These analyses indicate that these stresses increase
or decrease transcript abundance from not only pre-
viously identified stress-responsive genes, but also from
thousands of unannotated non-protein-coding regions.
Matsui et al. [130] estimated that approximately 80% of
previously unannotated upregulated transcripts arise
from antisense strands of sense transcripts. There was a
significant linear correlation between the expression
ratios (stress-treated/untreated) of the sense transcripts
and the ratios of the antisense transcripts. Interestingly,
the data suggested that such stress-responsive antisense

transcripts are derived from antisense strands of the
stress-responsive genes, RD29A and CYP707A1. Clearly,
transcriptional regulation is far more complicated than
we previously imagined. Whether or not such antisense
transcripts have biological functions is an important
issue that remains to be resolved.
Much more research is required in order to fully map

plant responses to abiotic stress. The nature of the path-
way responses will vary and is highly dependent on the
species, organ, tissue, cell type, developmental stage of
the plant, the stress or stresses affecting the plant, the
level and duration of the stress. Despite the vast amount
of research collected on abiotic stress in the last decade,
there are still significant gaps in our knowledge. We still
do not understand completely how plants perceive
stress. We don’t know all of the receptors and their sites
of action (organs, tissues and cellular components).
While we know a lot about downstream signaling (i.e.
transcriptional pathways), we know very little about the
primary signaling (i.e. proteomics). Most of the literature
on abiotic stress responses in plants is based upon tran-
scriptomics data rather than proteomics data. This is
not surprising as transcriptomics technology is more
advanced, easier to perform and less expensive. How-
ever, transcriptomics analyses are insufficient as there is
an overall poor correlation of transcriptomics profiles
with proteomics profiles [101,132,133] or enzyme activ-
ities [104,114]. There are only a few studies describing
phosphorylation cascades and other post-translation
modification activities in response to stress [134]. Recent
efforts to map the hormone [126,127] and light-regu-
lated [135] phosphorylomes are good first steps. Finally,
we need better tools to facilitate systems biology ana-
lyses especially in the area of bioinformatics. Transcrip-
tomics data can be collected in a matter of days or
weeks, but the data analyses often take more than a
year.

Conclusions
We have made great progress in understanding the
responses of plants to abiotic stress. There are inherent
physical, morphological and molecular limitations to the
plant’s ability to respond to stress. Systems biology
approaches have given us a more holistic view of the
molecular responses. Transcriptomics studies are well
advanced, but proteomics analyses are lagging behind,
especially the study of post-translational modifications.
Plant responses to abiotic stress are dynamic and com-
plex. The integration of multiple omics studies has
revealed new areas of interactions and regulation. Time
series experiments have revealed the kinetics of stress
responses, identifying multiple response phases involving
core sets of genes and condition-dependent changes.
One consistent trend in response to abiotic stress is the
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early down regulation of energy metabolism and protein
synthesis. This may indicate a conservation of energy by
the plant and may reflect a shift from plant growth to
protective mechanisms. In many examples presented in
this review, ABA signaling mediates the plant responses
to abiotic stress. Co-expression analyses are useful in
that they have revealed key regulatory hubs that can be
manipulated to produce different phenotypes. To get a
comprehensive understanding of plant responses to
abiotic stress, more extensive mapping of these
responses at the organ, tissue and cellular level are
needed. Such network analyses need to be extended to
the proteomics and enzyme activities levels. Models
need to be constructed and linked to phenotypic traits.
The linkage of key regulatory hubs to phenotypic traits
will allow for more rapid progress in the genetic manip-
ulation and production of crop plants. Current progress
is exemplified by the identification and validation of sev-
eral key genes that improved stress tolerance of crops in
the field. It is expected that progress in the plant
sciences and systems biology will continue to accelerate
in the near future.
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