
Supplemental Figures

Figure S1 | Distribution of the number of inter edges for random bipartitions of fixed degree
and for empirical knn graphs. This distribution serves as null distribution, see Figure S2.
Graphs with n nodes and degree k are sampled. They are randomly bipartitioned, where the size of one
bipartition is ni and the remainder of the graph gives raise to a second partition of size n − ni. Shown are
both sampling-based estimates and model predictions for different parameters.
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Figure S2 | The PAGA connectivity measure provides a low-variance estimate of inter-partition
connectivity that is approximately independent of partition sizes. While in the first three rows (a,
b), the number of inter-partition edges ε (second column) varies as a parabola with partition size ni, the
PAGA connectivity (third column) is essentially independent of ni. The first column shows an embedding
of the partitioned graph, the second column shows the number of inter-edges as a function of partition size,
the third column shows PAGA connectivity (11) as a function of partition size, the forth column shows the
distribution of inter-edges, the fifth column the distribution of PAGA connectivity and the sixth column the
distribution of partition sizes. Data has been sampled from the Gaussian mixture model (13) for different
cluster distances δ. For each value of δ (each row in the figure), we sample 100 observations xι in 500
simulations. a, Results for random bipartitions. b, Results for Louvain bipartitions. c, Summary of b. The
box plots within the violins show the inner quartiles. d, Feature-space based estimate of connectivity (20).
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Figure S3 | Connectivity of clusters sampled from Gaussian mixture model for different values
of the standard deviation. Here, we show samples from three Gaussian mixture models, which display
different degrees of clustering structure: the number of centers is fixed to 5 but the standard deviation σ is
increases from 4 to 6. The figure makes evident that the same number of inter-edges for a small cluster leads
to higher confidence in a connection than for a large cluster.
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Figure S4 | Illustration of multi-resolution analysis for simulated data. Note that unlike in Figures
1, 2 and 3 of the main text and several other supplemental figures, here, we did not enforce consistency
between graph layouts across resolutions. a, b, Partitions obtained using Louvain clustering in two runs
with different parameters, equivalent to those shown in Figure 2a: both abstracted graphs describe the same
topology. Note that in Figure 2a. c, d, Map between clusters of different resolutions. e, Reference partitions
colored with the associated new partition that has the largest overlap.
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Figure S5 | Robustness of PAGA. Sampling a wide variety of the input parameters (numbers of neighbors
in the kNN graph and resolution of the Louvain partitioning) results in vastly varying numbers of partitions,
hence vastly different clusterings of the data; note the large spread of the number of Louvain partitions.
Nonetheless, the topology is robustly inferred. a, Simulated data as in Figure 2. b, Data of Reference [1] as
in Figure 2.
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Figure S6 | Comparison with Monocle 2 and stemID 2 for simulated myeloid differentiation
and clusters. a, Prediction of graph abstraction, analogous to Figure 2. b, Prediction of Monocle 2 [2], the
best result after testing several parameters for the latent-space dimension. The clusters (groups 7, 8 and 11,
12 in panel a) dictate the shape of the inferred tree, being responsible for three of the four observed branches.
The continuous manifold is not resolved at all. The same coloring as in panel a is used. c, Prediction of the
lineage tree of stemID 2, the successor of stemID [3]. The author of stemID, D. Grün, ran the simulation
himself. The coloring and numbering of groups is chosen internally by stemID 2.
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Figure S7 | Comparisons for simulated myeloid differentiation giving rise to a simple tree-like
manifold. Results using, a, graph abstraction, b, Monocle 2 [2], c, d, ECLAIR [4] and e, f, DPT [5] in its
hierarchical implementation [6].

a b

Figure S8 | Monocle 2 for data of Paul et al. [1]. a, Monocle 2’s multiple branching example of
Supplemental Figure 16 of Reference [2] using the same color coding as in the original publication. b,
Rerunning Monocle 2 with the exact same parameters as for panel b, but keeping the lymphoids as in
Figure 2a. The resulting tree changed dramatically and is no longer biologically meaningful. For example,
the lymphoid cells are placed in the myeloid differentiation and myeloid progenitors (GMP) and monocytes
(Mo) are distributed over all terminal states. As Monocle 2 does not provide confidence measures, the user
erroneously expects all results to predicted with high confidence.
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Figure S9 | Comparison with Monocle 2 for data of Nestorowa et al. [7]. a, FR embedding
colored by cell type annotation. This is an alternative embedding to the one shown in Figure 2 based on the
graph that was not denoised. b, Running Monocle 2 for a latent space dimension of 4 underestimates the
complexity of the differentiation manifold. c, Running Monocle 2 for a latent space dimension of 10 recovers
the expected biology that late erythrocytes (3/Ery) and megakaryoctes (6/Mk) appear in the same region
of the tree. Nonetheless, there are qualitative inconsistencies: neutrophils (4/Neu) and monocytes (1/Mo)
appear in the same terminal branch. Megakaryocytes (6/Mk) appear in two branches. Basophils (9/Baso)
appear as progenitors of erythrocytes and megakaryoctes and the disconnected B cells appear within the tree.
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Figure S10 | Performance of different embedding algorithms in representing local and global
topological properties of high-dimensional data. Using PAGA as an initialization for established
manifold learning algorithms both leads to the best quality embeddings and enables early stopping. See (43)
for the definition of the conventional KL divergence, which quantifies the preservation of local topology, and
(46) for geodesic KL divergence KLgeo, which also accounts for preservation of global topology. Highlighted are
points in the embedding that lead to strong violations of global topology (overlapping “O” and disconnected
“D” points).
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Figure S11 | Simulated data for myeloid differentiation. Four representative realizations of time
series representing differentiation to four different fates. These time series have been sampled from (47) after
transformation to a system of stochastic differential equations Reference [6, 8].

PAGA UMAP

Figure S12 | PAGA and UMAP on 1.3 million neurons dataset from 10x Genomics [9]. While
PAGA takes about 90 s of computation time, UMAP takes about 3 h. Due to overlaying groups, UMAP blurs
the topological structure and visually suggests too much connectivity — it suggests connections where there
actually are none, as shown by PAGA. Consider the example of cluster 19, which UMAP suggests to connect
to cluster 21 whereas it actually connects to clusters 17, 30 and 8. Note that this figure is the only instance
of the main text in which we used the default initialization of UMAP and not the PAGA coordinates.
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Figure S13 | Annotation of Louvain clusters for hematopoietic data of Paul et al. using PAGA
and ForceAtlas2. PAGA and the ForceAtlas2 (FA) embedding were computed with default parameters. In
contrast to the PAGA-initialized embedding of Figure 2, the single-cell layout shows overlapping structure.
While this is a relatively small and simple dataset an interpretable single-cell embedding, it exemplifies that
the PAGA graph can be used as an even easier accessible visualization of the data. Both PAGA and single-cell
graph show the Louvain clusters, an erythroid branch marked by Hba-a2, a neutrophil branch marked by
Elane and a monocyte branch marked by Irf8.

10



a

b

c

d

Figure S14 | Abstracted graph for deep learning based feature space. Analyzing single-cell images
via a deep learning based distance metric. Graph abstraction correctly recognizes the cluster of damaged
cells as not belonging to the biological path that corresponds to cell cycle evolution through the interphases
G1, S and G2. a, Abstracted graph with Louvain partitions. b, Associated cell cycle phases. c, DNA content
along a valid path in the abstracted graph. d, The DNA content along an invalid path that involves the
damaged cells shows a clear non-biological kink.

11



Supplemental Notes

Contents

1 Theoretical background of PAGA 12
1.1 PAGA for mapping connectivity between partitions . . . . . . . . . . . . . . . . . . . 13

1.1.1 Graphs with constant degree distribution . . . . . . . . . . . . . . . . . . . . 13
1.1.2 Graphs with arbitrary degree distribution . . . . . . . . . . . . . . . . . . . . 13
1.1.3 Comparing model predictions with sampling based estimates for kNN graphs 14
1.1.4 Statistical test for disconnectedness and PAGA connectivity measure . . . . . 15
1.1.5 Relation to modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.6 Feature-space based connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.7 Benchmarks for Louvain-partitioned kNN graphs for clustering data . . . . . 17

1.2 PAGA for mapping transitions between partitions . . . . . . . . . . . . . . . . . . . . 18
1.3 PAGA for multi-resolution analysis of data . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Robustness of PAGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Remarks on generating and partitioning single-cell graphs . . . . . . . . . . . . . . . 21
1.6 Remarks on the reconciliation of clustering with trajectory inference algorithms . . . 22

2 Random walks on graphs 22

3 Comparisons with previous approaches 25
3.1 Conceptual comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Simulated minimal examples with known ground truth . . . . . . . . . . . . . . . . . 27
3.3 Hematopoiesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Runtimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Faithfulness of embeddings to global topology 28

5 Datasets 30
5.1 Simulated dataset for hematopoiesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 One million neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Experimental datasets for hematopoiesis . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Planaria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Zebrafish embryo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 Deep-learning-processed image data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Supplemental Note 1: Theoretical background of PAGA

The simplest measure for connectivity of two partitions of G is the number of connecting edges
between two partitions. However, this number alone depends strongly on the partition sizes, which
prevents its meaningful interpretation. Instead, we compute a statistic of this number that mea-
sures confidence in an actual connection between two partitions of G, as opposed to a connection
that is based on spurious edges. Hence, in the visualization of PAGA graphs, edge width should be
interpreted as a measure of connectivity whose strength indicates the presence of an actual connec-
tion. The present note is quite long, you can jump to subsection 1.1.7 if you are only interested in
numerical benchmark results and a summary figure.
Note that topological data analysis (TDA) [10] uses clustering algorithms that lead to overlapping

clusters and by that circumvents a statistical definition of a connectivity measure: two clusters are
connected if they have finite overlap. In contrast to the easily interpretable, essentially parameter-free
and computational efficient Louvain algorithm for modularity optimization [11] — which therefore
has become the standard for single-cell analysis [12] — TDA comes with problems in all three
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respects and is hence not widely used despite it’s recent proposition for scRNA-seq [13]. Also, to
date, overlapping graph partitioning algorithms, which also provide a notion of connectivity based
on overlaps are, to date, no practical alternative.

Supplemental Note 1.1: PAGA for mapping connectivity between partitions

In order to derive a statistical model for connectivity between partitions of kNN graphs of data we
need to study the distribution of inter-edges between partitions of the graph. In the simplest case,
the model is a distribution conditioned on partition sizes. However, a priori, it is somewhat unclear
on which degree distribution of a graph a model for inter-edges should be based. By construction,
kNN graphs display a degree distribution “close to a constant degree k”. However, this is not an exact
constraint and can be violated. As model systems, we investigate graphs with constant and arbitrary
degree distribution. We will then choose the appropriate model by comparing model predictions with
the empirical estimates of inter-edge distributions that we obtain from kNN graphs.

1.1.1 Graphs with constant degree distribution

Consider the case of a partitioned directed graph G = (V,E) with hi half-edges or “edge stubs”
attached to nodes in a given partition i, hj half-edges attached to nodes in a partition j and a total
of h =

∑
i′ hi′ half-edges, which we require to be even. Connected among each other, the half-edges

give rise to the e = h
2 = |E| edges of G. Assuming half-edges to be distinguishable and randomly

connecting half-edges constrained to a constant outdegree distribution of k = 1 in i and indegree
distribution of k = 1 in j, one has Ωtotal

const possibilities of combining edges and Ωε
const possibilities so

that exactly εij inter-edges from partitions i and j are obtained, with

Ωconst
total|h =

(h)!

2
h
2 (h2 )!

, Ωconst
εij |hi,hj ,h =

hi!hj !

εij !2(hi−εij)/2(
hi−εij

2 )!2(hj−εij)/2(
hj−εij

2 )!

(h− hi − hj)!

2
h−hi−hj

2 (
h−hi−hj

2 )!
. (1)

The resulting probability is pdirectedconst (εij |hi, hj , h) = Ωconst
εij ,hi,hj ,h

/Ωconst
total,h.

1 We now wish an estimate for
the number of inter-edges that is useful also for undirected graphs, hence, the sampling procedure
should be symmetric between i and j and the distribution of interest is the one of the summed
inter-edges ε = εij + εji when connecting outgoing edges both from i and j,

pconst(ε|hi, hj , h) =
ε∑

εij=0

pdirectedconst (εij |hi, hj , h)pdirectedconst (ε− εij |hj , hi, h). (2)

1.1.2 Graphs with arbitrary degree distribution

Consider again a partitioned directed graph G = (V,E), but now with e = |E| edges and n = |V |
nodes. Imagine we have ei dangling outgoing edges attached to ni nodes in partition i and we
randomly connect each of the dangling edges to a random node in the graph. Enumeration as
before gives Ωarbit

total possibilities of connecting these edges and Ωarbit
εij possibilities so that exactly εij

inter-edges from partition i to j are obtained,

Ωarbit
total|ei,n = (n− 1)ei , Ωarbit

εij |ei,nj ,n =

(
ei
εij

)
n
εij
j (n− nj − 1)ei−εij , (3)

where Ωarbit
εij |ei,nj ,n is the product of the possibilities for εij inter-edges from i to j and the total

possibilities of edges among the remaining nodes i. Upon definition of θi = ni
n−1 , the resulting

1 This is a simple expression in the bipartitioned case h = hi + hj

pdirected
const (εij |hi, hj , h = hi + hj) = 2εij

(
(hi + hj)/2

εij

)(
(hi + hj)/2− εij

(hi − εij)/2

)
.
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probability becomes a binomial

pdirectedarbit (εij |ei, ni, nj) =
(
ei
εij

)
θ
εij
j (1− θj)ei−εij , (4)

or equivalently,

εij ∼ Binomial(ei, θj), E[εij ] = eiθj =
einj
n− 1

, Var[εij ] = eiθj(1− θj) =
einj(n− nj − 1)

n− 1
. (5)

We can interpret εij as the number of “hitting” partition j when randomly distributing the ei edges
of partition i where θj is the probability for “hitting” j for a single edge from i.
As before, we wish the sampling procedure to be symmetric between i and j, hence are interested

in the distribution of ε = εij + εji, which reads

parbit(ε|ei, ej , ni, nj , n) =
ε∑

εij=0

(
ei
εij

)(
ej

ε− εij

)
θ
εij
j (1− θj)ei−εijθ

ε−εij
i (1− θi)ej−ε+εij . (6)

Often, we consider sufficiently large partitions and the binomial distributions become well-approximated
by Gaussians with means and variances as in (5). Hence, ε is well-approximated as the sum of two
Gaussian random variables

parbit(ε|ei, ej , ni, nj , n) ' N (ε|ε̂sym(ei, ej , ni, nj , n), σ̂sym(ei, ej , ni, nj , n)), (7)

with ε̂sym(ei, ej , ni, nj , n) =
einj+ejni

n−1 ,

σ̂sym(ei, ej , ni, nj , n) =
einj(n−nj−1)+ejni(n−ni−1)

(n−1)2 .

Assuming a knn graph with, at least on average, ei = kni and ej = knj , this simplifies further

ε̂symni,nj ,n := ε̂sym(kni, knj , ni, nj , n) =
2kninj
n−1

σ̂symni,nj ,n := σ̂sym(kni, knj , ni, nj , n) =
kninj(2n−ni−nj−2)

(n−1)2 . (8)

1.1.3 Comparing model predictions with sampling based estimates for kNN graphs

To assess how well models (2) and (7) capture the distribution of the number of inter-edges ε
in sampling-based simulations, we studied three sampling-based models for bipartitioned graphs.
The first model randomly connects half-edges in a bipartitioned set of nodes to simulate constant-
outdegree k = 1 graphs with partition sizes ni and nj = n − ni. The second and third model fit
kNN graphs to data sampled from a Gaussian and proceed with randomly partitioning this graph
by assigning nodes to random binary partition label — again for fixed ni and nj = n−ni. The third
model is equivalent to the second but uses instead of the non-symmetric kNN graph, the symmetrized
kNN graph — as results, for instance, in UMAP from the fuzzy union of local simplicial sets to each
data point [14].
Results of the sampling simulations based on estimates of 1000 samples show the following findings

(Supplemental Figure S1).

1. There is a strong difference in the functional form of distributions for constant and arbitrary
degree graphs for small numbers of nodes (n = 10 ni = 4). For higher values (n = 100,
ni = 40), both distributions approach Gaussians (two left panels of Supplemental Figure S1).

2. The constant-degree sampling based estimate agrees well with the prediction for the constant-
degree model (2), the kNN-fitting based sampling estimate agrees well with the prediction of
the arbitrary-degree model (7) (two left panels of Supplemental Figure S1).

3. If one evaluates the kNN graph as in UMAP, one obtains a an empirical distribution that is
no longer well-described by (7) (center panels of Supplemental Figure S1).
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4. The number of inter-edges depends on the partition-sizes (right panel of Supplemental Figure
S1). The relation on ni and nj = n− ni can be seen to be quadratic from (2).

As mentioned, kNN graphs do not have constant-degree k distributions as nearest-neighbor-
relations among two observations xι1 and xι2 are often not symmetric. Still kNN graphs are some-
what “close” to a constant degree k distribution. Supplemental Figure S1 provides strong evidence
that this is also the case when using model (7), which, in principle, accounts for arbitrary degree
distributions. This can also be theoretically understood by acknowledging that also in the model,
strong deviations from degree k are unlikely, in particular for sparse graphs with k � n which implies
a comparatively low variance of k.

1.1.4 Statistical test for disconnectedness and PAGA connectivity measure

Given equation (7), it is straight-forward to write down a hypothesis test for disconnectedness of two
partitions i and j with the null hypothesis that edges of i and j are randomly connected among each
other. One can reject the hypothesis of connectedness at a p-value p with an observed inter-edge
number εsymij , observed edge numbers of partitions ei, ej and partition sizes ni, nj

p =

∫ εsym
ij

0
dε parbit(ε|ei, ej , ni, nj , n) ' erf

(εsymij − ε̂(ei, ej , ni, nj , n)
σ̂(ei, ej , ni, nj , n)

)
. (9)

In order to define a connectivity measure for a PAGA graph, this p-value has the desired property
of varying in [0, 1] taking large values if it is likely that partitions are connected and taking small
values if it is unlikely. Given that we expect the null model of random connections to strongly
overestimate inter-edge numbers when applied in practice, the exponential variation of the p-value
hampers interpretation and visualization of PAGA graphs, in which edge thickness should indicate
connectivity. Using the p-values logarithmized version resolves the exponential variation, but does
not vary in [0, 1] anymore.
So, instead of using the p-value for quantifying connectivity c of partitions in a PAGA graph, we

suggest a linear function of the test statistic

cij = a
(εsymij − ε̂(ei, ej , ni, nj , n)

σ̂(ei, ej , ni, nj , n)
+ b
)

(10)

such that the connectivity measure takes values in [0, 1] with ε = 0 corresponding to connectivity
c = 0 and ε ≥ ε̂ corresponding to connectivity c = 1. Solving these conditions for a and b results in

cij =

{
εsym
ij

ε̂sym(ei,ej ,ni,nj ,n)
if εsymij < ε̂sym(ei, ej , ni, nj , n)

1 else.
(11)

This provides the basic model for “PAGA connectivity” through this paper — below we discuss how
this measure could presumably be improved.

1.1.5 Relation to modularity

In practice we are not interested in random partitions but in partitions that show stronger intra-
partition than inter-partition connectivity. Typically, one uses modularity optimization [11, 15, 16]
to compute such a partitioning. To conform with our previous notation, we not only give modularity
mij but also a symmetrized version msym

ij of it

mij = εij − ε̂mod(ei, ej), msym
ij = mij +mji = εsymij − 2ε̂mod(ei, ej), ε̂mod(ei, ej) =

eiej
ei + ej

, (12)

where ei is the number of outgoing edges of nodes in partition i, εij is the number of edges from
partition i to partition j and εij = εij + εji is the number of inter-edges, as before. Note that in

15



modularity optimization algorithms, the modularity measure is only evaluated for the same partition
i = j. Here, ε̂mod(ei, ej) is the expected number of inter-edges between partitions when randomly
connecting edges to edges — and not edges to nodes as in (7). This results in a probability θj =

ej
e

for connecting a given edge in partition i to an edge in partition j, hence eiθj expected edges from
i to j. If one assumes a directed constant-outdegree k kNN graph with ei = kni, ε̂sym(ei, ej) and
2ε̂mod(ei, ej) agree up to a small difference in the denominator — (ei + ej − k) versus (ei + ej) —
which comes from avoiding self-loops in ε̂sym(ei, ej) — a property of kNN graphs fitted to data.

1.1.6 Feature-space based connectivity

Let us now investigate whether we can relate the graph-based statistical measures of connectivity to
a notion of connectivity for the feature space X of observations xι. This will also provide the basis
for systematically benchmarking the previous graph-based measures on simulated data.
Consider the Gaussian mixture

p(x) =
1

2
(N (x) +N (x− δ)), (13)

where N (x) is the standard normal distribution (µ1 = 0, Σ = diag(1)) and µ2 = δ denotes the
mean of a second shifted normal distribution. Data sampled from this model show two clusters if
the distance between the cluster centers δ = |δ| is large enough. Otherwise, upon visual inspection,
the data “appear to be connected” even though model selection on Gaussian mixture models might
still select (13) as the model that most likely explains the data. While the structure of the model
(13) should be considered topologically disconnected as it does not rely on the parametrization of a
connected manifold, clearly, a kNN-graph fitted to data sampled is strongly connected across clusters
if the cluster centers are close enough.
Can we define a notion of connectivity on the level of the model that reflects the connectivity

observed in the knn graph? We suggest to define a “connected region” of the model as a subset of its
support in which it is not possible to determine the cluster origin of a given sample with confidence
higher than ε, that is

C = {x
∣∣ p(x|µ = µ1)− p(x|µ = µ2) < ε}. (14)

We can then consider clusters as connected if the “connected region” has probability mass greater
than some threshold α:

pC =

∫
C
dx p(x) > α, (15)

hence pC provides a measure of connectivity that measures how likely one observes “unassignable
points” or “connecting points” when sampling from the cluster model. The corresponding empirical
estimator for {xι} and n observations

p̂C =
|{xι|xι ∈ C}|

n
, (16)

provides a measure for the connectivity of the empirical distribution, given the model assumption.
Clearly, this is not yet a confidence measure for connectivity as arises from a hypothesis test. Testing
the null hypothesis that clusters are disconnected requires to fix the parameter δ: then one can test
whether the fraction of “connecting points” p̂C is significantly higher than pC as predicted the null
model — if this is the case, one judges that the data is connected. However, fixing a parameter δ
to some value can only be done in an ad-hoc way. Considering the alternative of testing the null
hypothesis that cluster centers are identical does not provide an answer that uses the wished notion of
connectivity. Finally, testing the null hypothesis that clusters are connected would require to specify
a model class that models connectivity accurately, which would require a manifold-based model with
continuous latent variables that parametrize the manifold. To circumvent these problems, we further
investigate the estimator p̂C as a direct measure for connectivity.
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In particular, we want to compare p̂C as arises from a cluster model with the subset of inter-cluster
edges in the corresponding kNN graph. In the case of example (13), this amounts to determining
the probability mass of the connected region

pC =

∫ δ
2
+xε

δ
2
−xε

dxδ

∫
dx⊥δ p(x), (17)

where points on the hyperplane ⊥ δ
2 fulfill p(x|µ = 0) − p(x|µ = δ) = 0 and xε determines how

“thick” the “connected region” subspace around this hyperplane is. It is determined according to
(14), ∫ δ

2
+xε

δ
2

dxδ

∫
dx⊥δN (x) =

∫ δ
2
+xε

δ
2

dxδ

∫
dx⊥δN (x− δ)− ε. (18)

This can be easily solved by exploiting the radial symmetry of the integrand for the second term in
x = xδ +x⊥δ in the d− 1 dimensional subspace. Using additionally the simple form of the isotropic
Gaussian

Sd

∫ ∞
0

dρρd−2N (ρ)

∫ δ
2
+xε

δ
2

dxδN (xδ) = Sd

∫ ∞
0

dρρd−2N (ρ)

∫ δ
2
+xε

δ
2

dxδN (xδ − δ)− ε (19)

where Sd =
(d−1)π

d−1
2

Γ (1+ d−1
2

)
. While this cannot be solved in closed form, the expression could be trivially

further simplified using the error function erf. However, note the following.
While points that fall in the “connected region” surely qualify as inter-partition edges of the kNN

graph that is partitioned according to the cluster labels, the assumption of a constant “thickness” xε
of the corresponding subspace is incompatible with kNN graphs. For large δ and large ρ, i.e. large
distance of the “connected region” from the cluster centers, data points are more sparsely sampled
and nearest neighbors are further separated. Hence, inter-cluster edges in a kNN graph correspond
to different uncertainties ε about cluster membership depending on the value of δ and ρ and one has
to assume xε ≡ xε(δ, ρ). As a rough approximation, we estimate (17) using xε ∝ xconstε (δ + ρ) and
obtain, assuming xconstε is small,

pC '
∫ δ

2
+xε

δ
2
−xε

dxδ

∫
dx⊥δN (x) ∝ δ2N (δ). (20)

1.1.7 Benchmarks for Louvain-partitioned kNN graphs for clustering data

Let us study the result of connectivity measures (11) and (20) when applied to the Gaussian mixture
model (13) in 20 dimensions. We consider 500 randomly generated datasets {xι} of 100 observations
xι. We consider both random partitions and Louvain partitions for increasing cluster distance δ in
(13). The result is shown in Supplemental Figure S2:

a, Random partitions lead to the parabolic form of the number inter-edges predicted by (11)
and the PAGA connectivity measure c is observed to vary between 0.5 and 1. The observed
variance of c is the variance of the rescaled ε/ε̂ni,nj ,n sum of binomial variables, hence decreases
as a square root for increasing values of ni.

b, Louvain partitioning a kNN graph deviates considerably from the random model already for
cluster distance δ = 0, which is expected as the number of inter-edges is optimized to a
local minimum. However, also in this case, the PAGA connectivity measure c is observed
to be approximately independent of partition size ni, hence, it continues to correct for the
variation of ε with respect to partition sizes ni. This shows that — while the null model of
random partitions is unsuitable for Louvain partitions — dealing with Louvain partitions can
be accounted for with a mere offset or threshold in the test statistic c. As this threshold is
hard to estimate a priori, it gives rise to the only numerical parameter in the implementation
of the PAGA plotting function: the ‘threshold‘ for c.
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c, The summary statistics shows that PAGA connectivity c is distributed with a much lower
relative variance as compared to the number of inter-edges ε. However, this statement only
holds for the outer quartiles of the distribution, the box plots show that the inner-quartiles of
the distribution of ε and c are comparable.

d, Comparing the graph-based measures with the feature-space based measure of the frequency
of points falling into a “connecting region”, one observes the expected qualitative agreement.

While Supplemental Figure S2c shows that the connectivity measure c of (11) has the desired prop-
erty of showing low variance by virtue of the corrected partition-size effect, it would be desirable to
have null model that correctly estimates the observed number of inter-edges of a Louvain-partitioned
graph at cluster distance δ = 0. Evidently, such a model cannot be obtained as a simple expression
but has to be fitted to data or obtained by sampling-based techniques. Independent of the computa-
tional burden introduced by this, which could hamper an efficient application in practice, there are
many open conceptual problems of how to estimate the null model for real data, which is beyond
the scope of this paper.
Let us finally inspect an example with several partitions sampled from a Gaussian mixture with five

cluster centers. It can be seen that connectivity of clusters shows meaningful variation and reflects
the basic assumption that a fixed number of inter-edges for small cluster gives higher confidence in
its connection than for a large cluster (Supplemental Figure S3).

Supplemental Note 1.2: PAGA for mapping transitions between partitions

In this section, we briefly outline the generalization of the PAGA idea of abstracting from single-cell
neighborhood relations to relations among groups by discarding insignificant relations attributed to
a noisy graph.
In the context of RNA velocity [17], consider again a kNN graph in d-dimensional feature space
{xι} = X = Rd, given a distance measure δ such as Euclidean distance. Fitting a model for the
steady state of reaction dynamics from unspliced to spliced RNA for each gene allows to define a
velocity vector vι ∈ Rd for each cell ι. By computing the projection of the velocity vector onto the
directions between the k neighbors of the cell in the kNN graph, it is possible to define a weight
matrix W with entries

wι1ι2 =
(xι1 − xι1) · vι1
|xι1 − xι1|

. (21)

The resulting directed graph provides indication for that a cell transitions from node ι1 to ι2 with
a transition tendency or strength wι1ι2 . We note that W is not a stochastic matrix but simply the
weighted adjacency matrix of a directed graph — hence we use the convention of adjacency matrices
where wι1ι2 is associated with an edge pointing from ι1 to ι2. For a stochastic matrix, one usually
follows the opposite convention (row vectors of probabilities and right stochastic matrices).
In order to judge whether a given group of cells i shows a significant drift or only random transitions

to another group of cells j, we first need to correct for the group sizes ni and nj . Intuitively, one
requires more transitions from i to j if ni is large. In order to correct for the size effect, we again
consider the expected number of inter-edges from i to j under random sampling as in (7). This time,
however, we do not consider the symmetrized version εsymij but consider εij . The estimator that is
corrected for ni hence reads

vij =

∑
ι1∈i,ι2∈j wι1ι2

εij
, where εij =

einj
n− 1

. (22)

This is in complete analogy to (11) only that here, we consider edge weights that deviate from one.
To judge whether the corrected summed difference of transition tendencies

vdiffij = vij − vji (23)
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provide significant evidence for transitions to one group — deviates from 0 — we use a t-test. If vdiffij
takes a positive significant value, we orient an arrow in the PAGA graph from i to j. The negative
log p-value of the test has the desired property of taking large values if we can be confident in
transitions from i to j. However, it approaches infinity for large values of wdiff

ij , which is undesirable.
Instead of the p-value, therefore, we use the summed transitions vdiffij normalized to the standard
deviation of the nvij = |{1|vι1ι2 6= 0 ∨ vι2ι1 6= 0}| observations of

vdiff,i,jι1ι2 =

{
vι1ι2 if vι1ι2 6= 0
−vι2ι1 , if vι2ι1 6= 0,

∀ι1 ∈ i, ι2 ∈ j. (24)

Hence, vdiffij = µ(vdiff,i,jι1ι2 ) and σdiffij = σ(vdiff,i,jι1ι2 ) and we define the PAGA transition tendency as

ṽij =
vdiffij

σdiffij
. (25)

Examples are shown in Figure 3. We note that a completely different approach to modeling
transitions between partitions has been proposed by David and Averbuch [18]. We also note that
the approach here does not suffer from the problems discussed in [19]. Regarding the general
interpretation of single-cell trajectories on snapshot data, we refer the reader to [5] and [19].

Supplemental Note 1.3: PAGA for multi-resolution analysis of data

Consider the finite node set V of observations of cells. To define a multi-scale graph, we assume an
additional filtration {V (i)}i on V , i.e. V (i) being a partition or clustering of V , with at its lowest
level i = 0 being the whole set V (0) = {V }, and at its highest i = n being the set of nodes
V (n) = {{vι}|ι ∈ V }, such that for i > 0

∀W ∈ V (i)∃W ′ ∈ V (i−1) :W ⊂W ′. (26)

We interpret a low filtration level i as a coarse-grained clustering of observations, which means a low-
resolution representation of the topology of data. Going to higher resolutions i, we aim to describe
more fine-grained aspects of the data and eventually, for i = n, the single-cell level. Usually we are
only interested in a small set of coarse-grained resolutions {i1, i2} that have a meaningful biological
interpretation.
We can describe the filtration more explicitly by V (i) = {W (i)

1 , . . . ,W
(i)
mi}, where by definition

W
(i)
1 t . . . tW

(i)
mi = V . Then the partial order of the filtration induces a map

f (i) : {1, . . . ,mi} → {1, . . . ,mi−1} (27)

such that

W
(i)
j ⊂W

(i−1)
f (i)(j)

. (28)

We can concatenate this to get for i′ < i

f (i,i
′) := f (i

′) ◦ f (i′+1) ◦ . . . ◦ f (i), (29)

which lets us map any cluster on level i to a lower resolution i′.
Beyond Figure 3 and Figure 4, Supplementary Figure S4 shows a particularly simple example for

a multi-resolution embedding for the simulated data of Figure 2. Supplemental Figure S4a and b
show partitioned single-cell graphs and the associated PAGA graphs at two resolutions that differ
from the one in Figure 2. Supplemental Figure S4c and d visualize the map (29) between clusters at
different resolutions via association matrices. Supplemental Figure S4e shows the single-cell graph
colored with mapped partitions.
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Within PAGA, we combine this with an additional connectivity structure between vertices (v1, v2).
We therefore assume a given graph G = (V,E) on V with edges e = {v1, v2} such that v1 6= v2 ∈ V .
The edges may possibly be weighted with a function w(e) or be directed (v1, v2).
The filtration V (i) induces coarse-grained graphs G(i) = (V (i), E(i)), where multiple definitions of

coarse-grained edge sets could make sense. For instance, one could define the “complete abstracted
graph” for resolution i by identifying E(n) := E and demanding

e = {wj , wk} ∈ E(i) ↔ {W (i−1)
f (i)(j)

,W
(i−1)
f (i)(k)

} ∈ E(i−1), (30)

That is, any two supersets are connected if there is a connection one level below and hence on any
level below. This is theoretically attractive since it is transitive, but is problematic in practice. It is
not robust for noisy graphs and leads to strongly connected coarse-grained graphs that reflect the
exact connectivity of the single-cell graph.
PAGA solves this by generating weighted coarse-grained graphs, which are then “abstracted” by

thresholding low-weight edges. The simplest weight would be the corresponding number of inter-
edges in the single-cell graph. Within PAGA, we use a statistical model to derive the weight (11)
as the number of inter-edges in the single-cell graph divided by the expected number of inter-edges
when assuming random connections (Supplemental Note 1.1).
Given an abstracted graph {G(i)} as defined above, we can now study paths across resolutions.

We say that a low-resolution path p(i−1) = (w
(i−1)
j1

, . . . , w
(i)
jk
) on G(i−1) represents a high-resolution

path pi on Gi if

{w(i)
kl
, w

(i)
kl+1
} ∈ E(i), kl = f (i)(jl), kl+1 = f (i)(jl + 1). (31)

Conversely, we say that a high-resolution path p(i) = (w
(i)
j1
, . . . , w

(i)
jk
) on G(i) is represented by a

low-resolution path p(i−1) on G(i−1) if

{w(i−1)
f (i)(jl)

, w
(i−1)
f (i)(jl+1)

} ∈ E(i−1). (32)

Note that the complete abstracted graph represents all high-resolution paths. However, a “good
abstraction” of a high-resolution graph represents many high-resolution paths while being as sparse
as possible. Sparsity arises naturally by demanding that the abstracted graph only represents those
high-resolution paths that are statistically well supported, which is achieved through (11). This also
defines the sense in which an abstracted graph can be said to be “topology preserving”.

Supplemental Note 1.4: Robustness of PAGA

Let us take a more practical view on the question of whether the topology of two abstracted graphs
G∗1 and G∗2 agree under the constraint that the node labels of G∗1 and G∗2 are consistent with each
other. Moreover, instead of only detecting exact matches, we aim for a continuous measure of
agreement.
Associating a partitioning with a reference partitioning.
To establish such a measure, we first compute the overlaps of the partitions labelled by G∗1 and by

G∗2 (Supplemental Figure S4a, b). By that, we generate non-unique associations between partitions,
as visualized in an association matrix (Supplemental Figure S4c). The association matrix can either
be normalized with respect to the reference groups V ∗1 (Supplemental Figure S4c), with respect to
the new groups V ∗2 (Supplemental Figure S4d) or with respect to the union of partitions, which
leads to the Jaccard index. Instead of the Jaccard index we want a score that measures how well
two partitions mutually overlap — are mutually contained in each another — and consider the
minimum of both mentioned normalizations — the “minimal overlap” — for each combination of
groups (i1, i2) ∈ (V ∗1 , V

∗
2 ). Supplemental Figure S4e colors each partition in V ∗1 with the partition

in V ∗2 with which it has the largest minimal overlap.
Comparing paths in abstracted graphs.
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For each shortest path between two leaf nodes in G∗2, there is a shortest path between the as-
sociated nodes in G∗1. This enables to compare the two paths and to count the fraction of steps
that are consistent among two paths. To measure the agreement of the topologies between two
abstracted graphs, we compute the fraction of agreeing steps and the fraction of agreeing paths over
all combinations of leaf nodes in two given abstracted graphs.
For instance, consider the shortest path between leafs (21, 2) in the reference graph G∗1 and

the shortest path between leafs (7, 11) in the new graph G∗2 in Supplemental Figure S4a and b,
respectively:

p1 = (21, 8, 18, 7, 9, 2), p1 ∈ G∗1
p2 = (7, 2, 9, 10, 11), p2 ∈ G∗2. (33)

By computing the overlap of reference partitions with new partitions, we can map p1 to the label
space of G∗2

pmapped
1 = ((7, 2), (6, 7, 2), (2, 7), (2, 9), (9, 10, 3), (11, 10)), (34)

that is, partition 21 in G1 has finite minimal overlap with partitions 7 and 2 in G2, partition 8 in
G1 has overlap with partitions 6, 7 and 2 in G2, and so on.
Transitioning through path p2 and counting for each transition whether it’s present or not in

pmapped
1 allows to count the number of agreeing steps. If all steps agree with each other, the paths
p1 and p2 agree with each other. In the example of equation (33), p2 involves 4 steps, 4 of which
agree with pmapped

1 .
Benchmark.
In Supplemental Figure S5, we use the just-described measure to demonstrate robustness of PAGA.
A related measure from the literature.
Previously, it has been suggested to correlate the distribution of path lengths of all paths through

trees as a measure for topological similarity of trees [4]. Specifically, for a tree whose nodes label
sets of data points, the lengths of all paths between all pairs of data points are computed. The
correlation of such path-length sets obtained for two trees is suggested as a measure for topological
similarity of the two trees. Besides being highly redundant and costly to compute, the resulting
measure is very rough as it does not map paths onto each other; that is, it does not account for
inconsistencies of paths with the same length.

Supplemental Note 1.5: Remarks on generating and partitioning single-cell graphs

At the heart of PAGA lies the assumption that the single-cell graph G— the kNN graph of observa-
tions xι in some feature space — provides a meaningful representation of data. This assumption is
on one hand based on the community’s success with graph-based clustering [11, 12, 20], pseudotime
inference [5], visualization [21, 22] and tSNE [23, 24]. On the other hand, it is based on the observa-
tion that neighborhood graphs robustly generalize any local distance measure to a global scale. As
any fixed distance measure can at best encode a very rough notion of biological similarity with an
exploding error for large distances, it is more robust to only evaluate it locally, and construct the
global distances from the graph of neighborhood relations. See how some of us discuss this in more
detail in Supplemntal Note 3 of Reference [25].
In this paper, we only consider established preprocessing steps [22, 26, 27] for single-cell tran-

scriptomic data, each of which give rise to a different fixed distance measure. For single-cell imaging
data. we consider a learned distance measure as induced by the feature space of a deep learning
model [28]. Any other distance measure, for example, the kernel-based measure of Reference [29],
or autoencoder representations [30, 31] would also be a viable option. Finally, we remark that de-
noising the kNN graph is another step, which should be considered. This can for instance be done
by “pruning” [12] of by computing neighborhood relations in the truncated spectral approximation
of the graph’s adjacency matrix (“diffusion map” representation).
A partitioning of G that maximizes the ratio of intra- to inter-partition edges is natural in the

sense that it reveals regions of the graph with different connectivity and hence, different topology.
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Optimizing this ratio is known as optimizing modularity [15]. An efficient algorithm for this [11]
has been suggested for single-cell biology by Levine et al. [12]. Loosely speaking, one expects
to obtain the clearest coarse-grained group structure of data at a fixed resolution if choosing the
partitioning that maximizes modularity. The original implementation of the Louvain algorithm could
lead to disconnected communities when nodes were assigned to a common community with a single
node connecting two or more parts of this community. When the central node was reconsidered
by the algorithm and moved to a different community, a disconnected community remained. This
unexpected behaviour could be fixed by splitting disconnected communities before each community
aggregation step in the implementation of [32]. Note that the Louvain algorithm has also been
adopted by popular single-cell analysis toolkits such as Seurat [26] and Cell Ranger [27]. Many
other possibilities for partitioning G— or clustering the data — exist: we mention spectral clustering
and the graph-based hierarchical clustering [33], which is based on a random-walk based distance
measure.

Supplemental Note 1.6: Remarks on the reconciliation of clustering with trajectory in-
ference algorithms

Here, we provide a more formal explanation of the discussion of Figure 1 in the main text. The
aim of any pseudotime of given data is to provide a continuous latent variable that associates with
continuous variation in the data; presumably the process that generated the data. Furthermore,
pseudotemporal ordering of cells enables the identification of the relative timing of different events
during the process — it tries to represent the internal “clock” of cells as encoded in its molecular
configuration. A clustering analysis, by contrast, relates neither cells nor clusters to each other.
With the PAGA graph G∗, which describes the connectivity and “continuity” relations cij of clusters
i and j of G, and the pseudotime measure d(ι1, ι2), which measures the continuous progression of
a cell ι1 to a cell ι2, one reconciles the result of a clustering analysis with the aim of a pseudotime
analysis: Each cluster is related to any other cluster as either being disconnected or connected
with one or several paths of high confidence in G∗. Moreover, within each cluster, each cell is
ordered according to pseudotime. One can hence trace a continuous process from a root cell ιroot
in a root cluster iroot to any terminal cell ιend in its terminal cluster iend by following a path of
high confidence (iroot, i1, i2, . . . , iend) in G∗. In each step of this path, the pseudotemporal ordering
provides an ordering with single-cell resolution and, hence, one traces the progression of single cells
along an ensemble of paths of high-confidence in G. Thereyby, PAGA provides a topology preserving
map of cells as (G∗, d). Without the PAGA graph G∗, computing the ensemble of highly confident
paths from from iroot to ιend in G is a computationally much harder and an unsolved problem —
only recently, during the revision of this paper, a simulation-based approximative approach has been
proposed, but not validated on many datasets [34]. Presumably, the heuristics for their inference
are less transparent and easy to control than the heuristics involved in partitioning a graph G and
generating a PAGA G∗.

Supplemental Note 2: Random walks on graphs

On the single-cell level, the continuity of connections are believed to be well parametrized by a “pseu-
dotime” [35, 36] that measures the distance covered in a continuous progression along a manifold.
A robust kernel-based measure that can be easily extended to a graph, diffusion pseudotime, has
recently been proposed by Haghverdi et al. [5]. This measure and similar scale-free random-walk
based measures though do not account for clustering structure in the data; they are undefined for
disconnected graphs. Below, we show how to overcome this limitation by extending these measures.
Interpreting random walks and their path distributions.
It is important to note that in the whole paper, when we say “random walk on a graph”, we mean

a discrete-space Markov process on the state space given by the nodes of the graph and non-zero
transition probabilities between any two connected nodes.
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Such random walks can be used to probe the global topology of the single-cell graph G but do not
provide a good model for the biological processes that one might hypothesize to have generated the
data in the first place. The primary deficiencies of the Markov random walk when seen as a model
for a biological process are the following.

• Undirectedness. When progressing along a differentiation trajectory, at some point, one expects
commitment of a cell to a specific fate and a directed motion to that fate with some fluctuations.
By contrast, the diffusive motion induced by the Markov random walk is highly non-directed,
which leads to unrealistic paths that go back and forth and pass through remote regions of the
graph.

• Independence of the expression of specific genes. The random walk is independent of the
expression of specific genes, which may be quite relevant for the commitment to specific fates;
it only depends on global differences in the transcriptome.

These deficiencies of the random walk become apparent already when modeling a biological process
using the simple stochastic differential equation based model discussed in Supplemental Note 5.3.
The distribution of single-cell paths that correspond to a path through the abstracted graph, by

contrast, resolves the problem of undirectedness by bounding the distribution to the ribbon of the
connected sequence of groups.
Existing random-walk based distance measures.
For a single-cell graph G with nnodes nodes and nedges edges, consider the normalized graph

laplacian [37, 38]

L = I − T, T = D−1A, (35)

where I is the nnodes × nnodes identity matrix and T is the transition matrix of the same shape. T
is obtained from the weighted adjacency matrix A of G by normalizing with row sums of A, that
is, D is the diagonal matrix that stores the degree of each node in G. In practice, we compute the
weights of the adjacency using a Gaussian decay with euclidian distance between two data points
in gene expression space, see e.g. Reference [5]; after that, we density-normalize obtained weights
[39, 40] as in Reference [5].
For a study of random walks generated by T , a spectral analysis of L and T is convenient and one

hence considers the matrices L̃ and T̃ , which are obtained by multiplying (35) with D−
1
2 from the

left and with D
1
2 from the right

L̃ = I − T̃ , T̃ = D
1
2TD−

1
2 . (36)

Hence, L and L̃ have the same spectrum {1− λ1, 1− λ2, . . . } and the spectrum of T and T̃ is given
as {λ1, λ2, . . . } with λ1 = 1, λ2 < λ1, . . . for a connected graph G [37, 38]. For a disconnected graph
with ncomps disconnected components, the adjacency matrix A has block-diagonal form with ncomps
blocks and there are ncomps eigenvalues λr with value 1 and corresponding eigenvectors that are the
indicator vectors of the connected components. The eigenvectors ṽ of T̃ are related to the right
eigenvectors v of T as [37–39]

vrι =
ṽrι√
Dιι

∀r, ι. (37)

The right eigenvectors v of T are known as “diffusion map” coordinates [39], whereas the left eigen-
vectors span the space of probability distributions of configurations of the Markov process. The first
right eigenvector, corresponding to λ = 1, is the all-one vector — with only 1 as entry — and the
first left eigenvector is the stationary state of the Markov process.
Using this notation, one obtains the mean commute time — the average number of steps one

needs to arrive from node ι1 to another node ι2 — in equation (38a) [37, Corollary 3.2]. One obtains
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“diffusion distance” [33, 39] in equation (38b) and “diffusion pseudotime” [5] in equation (38c).

mean commute time(ι1, ι2) = 2nedges

nnodes∑
r=2

( 1

1− λr

)2
(vrι1 − vrι2)2, (38a)

diffusion distance2(k)(ι1, ι2) =
nnodes∑
r=2

λ2kr (vrι1 − vrι2)2, (38b)

d̃pt
2
(ι1, ι2) =

nnodes∑
r=2

( λr
1− λr

)2
(ṽrι1 − ṽrι2)2, (38c)

dpt2(ι1, ι2) =
nnodes∑
r=2

( λr
1− λr

)2
(vrι1 − vrι2)2, (38d)

algebraic distance(k)(ι1, ι2) =
rmax∑
r=1

(χ(k)
rι1 − χ

(k)
rι2)

2, χ(k)
r = Lkχ(0)

r . (38e)

With equation (38d), we give a slightly altered definition of diffusion pseudotime, which is consistent
with the other measures. Highly related is algebraic distance on the graph as given in (38e), see e.g.,
[40].
Interpretation of random-walk based distance measures.
Random-walk based distances on graphs have first been used to cluster graphs in Reference [33]

(38b) and Reference [41] (38a), albeit without considering neighborhood graphs of data points.
Reference [39] proposed “diffusion distance” for measuring the similarity between data points, albeit
not on a graph, but for a Gaussian kernel matrix. Then, a random-walk based distance measure
for single-cell data has first been proposed to measure the similarity between cells by Reference [5];
again not formulated for graphs. These authors introduced the measure of equation (38c), which
integrates out the number of steps nsteps in (38b) to arrive at a scale-free measure.
The dpt measure is highly similar to (38a), which is easier to interpret and scale-free, too: it

measures the average number of steps it takes to walk from ι1 to ι2. While equation (38b) arises as
the summed difference of transition probabilities to all other nodes for two random-walks of length
nsteps that start at nodes ι1 and ι2, respectively [33, 39], (38d) considers the sum over all numbers
of nsteps, hence a difference of “accumulated transition probabilities”, which are difficult to interpret;
the interpretation of equation (38c) is not easier.
Algebraic distance, which has been used for graph partitioning in recent years [40], approximates

(38a) and diffusion pseudotime and provides the computationally most efficient way of computing a
random-walk based distance measure.
Random-walk based distance measures for disconnected graphs.
Evidently, both scale-free distance measures, mean commute time (38a) and diffusion pseudotime

(38c), are not defined for a disconnected graph G for which ncomps > 1 eigenvalues are 1: they yield
an infinite distance even for two nodes ι1 and ι2 that are in the same connected component of G.
It is important to realize that each connected component of G automatically leads to a block Tb in
the transition matrix T that is itself a valid transition matrix and the spectrum of T is the union of
the spectra of the blocks Tb. The eigenvectors of T are the eigenvectors of the blocks Tb filled with
zeros at the positions of the other blocks [see e.g. 38]. Hence, we propose to extend mean commute
time and diffusion pseudotime for disconnected graphs as

mean commute time(ι1, ι2) = 2nedges

nnodes∑
r=ncomps+1

( 1

1− λr

)2
(vrι1 − vrι2)2, (39a)

d̃pt(ι1, ι2) =
nnodes∑

r=ncomps+1

( λr
1− λr

)2
(ṽrι1 − ṽrι2)2 +

ncomps∑
r=1

(ṽrι1 − ṽrι2)2. (39b)

dpt(ι1, ι2) =
nnodes∑

r=ncomps+1

( λr
1− λr

)2
(vrι1 − vrι2)2, (39c)
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The distribution of zeros in the eigenvectors vr and ṽr guarantees that for two nodes ι1 and ι2 in the
same connected component b, only the spectrum of the block transition matrix Tb contributes. For
two nodes ι1 and ι2 in two disconnected components, the measures take the sum of their maximum
values in both components, which should be interpreted as infinite. Without problem, one can make
this explicit in the equations by distinguishing cases in which ι1 and ι2 belong to the same component
from cases in which they belong to different components.
We note that, in practice, instead of summing over all eigenvectors nnodes, we sum over a low

number of eigenvectors — “diffusion components” in the language of Coifman et al. [39] — as others
[5, 41].
While in the present publication, we use equation (39b) throughout, we expect that equation (39a)

could be useful in the future due to its easier interpretation.

Supplemental Note 3: Comparisons with previous approaches

Establishing fair comparisons with other algorithms is difficult mainly for two reasons. (i) Compar-
isons on real data are problematic as a quantitative undebatable ground truth is hard to obtain.
(ii) It is very easy to “make algorithms fail”, for example, by choosing an unsuitable preprocess-
ing or pathologic parameters. Hence, after a comparison of concepts (Supplemental Note 3.1), we
restrict ourselves to addressing fundamental problems and qualitatively wrong predictions of other
algorithms for simple, simulated minimal examples with known ground truth (Supplemental Note
3.2), well-known real data, where we were able to reproduce published testing conditions [2] (Sup-
plemental Note 3.3) and a comparison of runtimes (Supplemental Note 3.4). We note that a recent
comprehensive trajectory inference review [42] positively mentions PAGA.

Supplemental Note 3.1: Conceptual comparisons

Graph abstraction
PAGA provides a graph abstraction method that is suitable for deriving interpretable abstractions

of the noisy kNN-like graphs that are typically used to represent the manifolds arising in scRNA-seq
data. The review of Hu & Shi [43] discusses graph abstraction within the context of (1) graph
coarsening, (2) loss-less topology compression and (3) community detection.
Within graph coarsening, graphs are coarsened using “micro-clustering” approaches, such as edge-

collapsing [44], which do not yield interpretable abstractions. Graph coarsening is typically used as
a preprocessing step for graph partitioning (community detection) or for initializing force-directed
graph drawing. This procedure parallels one use case of PAGA: initializing an embedding algorithm
based on an embedding of a PAGA graph, see Methods.
Lossless topology compression algorithms perform exact compression through motifs. Hu & Shi

state that even though “lossless compression of large graphs can be critical to understand the details
of the original graph, it is extremely difficult to achieve on real graphs with small world nature”.
Using such approaches, we were unable to derive meaningful results for scRNA-seq data.
Community detection algorithms themselves are not yet “graph abstraction” algorithms, as they

do not provide a method for defining edges among the detected communities. Closest to PAGA is
the reference [45], who use a modularity-based hierarchical graph. However, the “edge bundling”
methods therein are “pattern-based” and not statistical and hence, unsuitable for noisy scRNA-seq
data.
Algorithms used in biology
Monocle 2 [2] uses “reversed graph embedding” [46], which aims to fit a geometrical model for

a graph to projections of the data to a low-dimensional latent space. Even though, in principle,
any model could be used for that, in practice, only tree-like models are computationally tractable.
Hence, Monocle 2 tries to force data into a tree-like topology without providing a statistical measure
for how reliable the resulting fit is.
Spade [47], StemID 2 [3], Eclair [4], TSCAN [48] and Mpath [49] use different clustering algorithms

such as k-means, k-medoids, hierarchical clustering or DBSCAN in a dimensionality-reduced space.
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In a second step, they fit a minimum spanning tree to either the centroid or medoid distances
or to projections of cells on linear connections between centroids or medoids. In this, distances
are computed using simple, fixed distance measures such as the euclidean or the correlation-based
distance. Neither do these distances between clusters measure how well and if clusters are connected
with each other, nor do these methods try to invoke a statistical model to address this question.
The computationally expensive sampling procedures in StemID 2 and Eclair only partially alleviate
the principle problem of high non-robustness that is caused by these deficiencies. Projections on
linear connections between clusters assume a linear geometry of differentiation trajectories, which
is certainly violated in practice. Hence, Mpath, for example, has only been shown to reconstruct
processes with a single branching [49]. Moreover, it is important to note that none of the used
clustering algorithms in these methods guarantees a topology preserving coarse-graining of the data:
disconnected regions of data might cluster together and connected regions might be torn apart.
DPT [5] computes a random-walk based pseudotime for all cells. It cannot handle data with

disconnected structure and is only able to detect single branchings which, in addition, is prone to
violating the topological structure in the data (see, e.g., Figure 2c of Reference [13]). This problem
becomes particularly pronounced in the extension of DPT to multiple branchings [6].
Rizvi et al. [13] suggest topological data analysis (TDA), in particular, the MAPPER algorithm

[10] for analyzing single-cell data. MAPPER constructs a partial coordinatization of the data in
the form of a simplicial complex, which has some similarity with the PAGA graph introduced in
the present work. Both MAPPER’s simplicial complex and the PAGA graph represent connectivity
of clusters in the data. However, the construction of MAPPER’s simplicial complex differs fun-
damentally from the PAGA graph. In particular, the clusters do not correspond to regions with
controlled resolution and high intra-connectivity in the kNN graph, which are typically used in the
field as proxies for cell types or cell states. Hence, in contrast to PAGA, MAPPER does not use an
easily interpretable partitioning of the data into connected and disconnected regions, but a highly
fine-grained, overlapping clustering, where clusters merely serve a technical purpose and are com-
puted on a very low-dimensional map of data. Moreoever, MAPPER’s connectivity measure directly
reflects the amount of overlap between these clusters. Hence, the measure does not induce a natural
simplification by discarding statistically insignificant connections - it retains the full connectivity
information of the overlapping clustering. Very generally, MAPPER is not based on simplifying a
kNN graph of data points but uses the mentioned low-dimensional representation of data. Hence,
MAPPER does not allow for a robust, random-walk-on-the-kNN-graph based distance measure for
pseudotime estimation. Even though TDA allows the definition of continuous coordinates on the
simplicial complex, their robustness and interpretability has not been shown. We interpret PAGA as
a pragmatic, easily-interpretable, scalable and robust way of performing topological data analysis.
The graph coarsening approach of Wagner et al. [50] — developed at the same time and inde-

pendently of PAGA — is also based on computing a connectivity measure based on the number of
inter-edges between clusters in the single-cell graph. However, the approach has only been validated
on a single dataset and does not provide a ready-to-use computational method for users. In addi-
tion, their metric computes for each pair of partitions the ratio of the number of inter-edges versus
the number of the union of their out-going edges, which systematically overestimates connectivity.
Assume two partitions share, relative to their size, a very small number of edges with each other and
none with any other cluster - likely, these edges are a result of noise and the clusters are actually
disconnected. However, in the approach of Wagner et al., such clusters appear as strongly connected.
The hierarchical tSNE approach of Unen et al. [51] — published during the revision of the present

paper — presents an idea for measuring “overlap between influence regions” of clusters obtained from
density-based clustering. However, the measure is not related to the measure developed for PAGA.
The authors proceed in using this overlap as a similarity measure to implement a hierarchical version
of tSNE.
The graph-based approach p-Creode of Herring et al. [52] — published during the revision of the

present paper — uses a density-adjusted kNN graph to produce an ensemble of potential trajectories.
A consensus graph is then selected from the ensemble using a graph similarity metric.
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We do not compare our method to Wishbone [53], which can only detect a single branching, nor
to the fundamentally different, fully supervised approach STEMNET [54].

Supplemental Note 3.2: Simulated minimal examples with known ground truth

We consider a minimal example with known ground truth to show that graph abstraction overcomes
qualitative conceptual problems in the design of algorithms for the inference of lineage trees. The
dataset consists in a connected tree-like manifold and two disconnected clusters and has a clearly
defined ground truth — a computational model for hematopoiesis (Supplemental Figure S11, Sup-
plemental Note 5.3) — and very little noise. Nonetheless, none of Monocle 2, StemID 2, Eclair and
DPT produce sensible results. Only when we removed the clusters from the data, these algorithms
made sensible predictions. To reproduce the following comparisons and to get more information
follow this link.
Graph abstraction recovers the ground truth (Supplemental Figure S6a). Monocle 2 [2] — even

after testing several values for the latent-space dimension in Monocle 2 [2] — fits a tree to the clusters
and misses to recognize the continuous manifold in the data (Supplemental Figure S6b). D. Grün
ran stemID 2 — the unpublished successor of stemID [3] — on the minimal example. However, the
produced graph-like object erroneously connects one of the clusters with the manifold (Supplemental
Figure S6c). For the minimal example, we could not produce any sensible result neither with Eclair
[4] — even after optimizing parameters in correspondence with the author G. Giecold — nor DPT
[5].
As a control, we aimed to obtain sensible results with the competing algorithms and considered a

simpler dataset that only contains the continuous tree-like manifold of the previous example. Graph
abstraction recovers the ground truth (Supplemental Figure S7a). Monocle 2 can be tuned — by
adjusting the latent space dimension — to yield the correct result (Supplemental Figure S7b). Eclair
[4] obtains a wrong result even for this simple tree (Supplemental Figure S7c, d). DPT [5] does,
by construction, not infer a lineage tree but merely detects two branching subgroups; similar to a
clustering algorithm. In a hierarchical implementation [6], it detects an arbitrary number of groups.
Using the latter to detect four branchings we can detect two branchings (Supplemental Figure S7e)
but fail to detect a third. Note that only when using diffusion maps for visualization, the clustering
of groups appears natural (Supplemental Figure S7f).

Supplemental Note 3.3: Hematopoiesis

Comparisons for data of Paul et al. [1].
In the recent Monocle 2 paper of Qiu et al. [2] the data of Paul et al. [1] served as an example for the

reconstruction of a complicated differentiation tree in Supplemental Figure 16. In the preprocessing
step for the analysis of this data, Qiu et al. removed a cluster of lymphoid cells. In many situations,
clusters of cells might not be annotated or not be clearly disconnected and it might not be clear
whether one should remove them from the data. We therefore wondered what would happen when
rerunning Monocle 2 with the exact same settings on the same data but keeping the cluster of
lymphoids. While PAGA produces the same result irrespective of the presence of this cluster —
it is simply disconnected in Figure 2, Monocle 2’s inferred tree changes dramatically and displays
qualitatively wrong biology, for instance, by placing the lymphoid cluster in the center of the myeloid
differentiation.
Comparison for data of Nestorowa et al. [7].
Supplemental Figure S9 shows a comparison for data of Reference [7].

Supplemental Note 3.4: Runtimes

The authors of Monocle 2 report a runtime of 9min for 8 000 cells [55] and a linear scaling. Ex-
trapolation yields 76.5min for 68 000 cells for which PAGA takes a few seconds — constructing the
neighborhood graph and running clustering take an additional 3min; hence PAGA is about 25 times
faster.
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PAGA for 1.3 million cells runs 90 s— constructing the neighborhood graph and running clustering
takes about 45min each. No other trajectory inference algorithm scales to such high cell numbers.

Supplemental Note 4: Faithfulness of embeddings to global topology

Consider the cost function of the widely used tSNE algorithm [23],

pιι′ =
pι′|ι + pι|ι′

2N
, pι′|ι =

exp(−d(xι,xι′)2/2σ2ι )∑
κ6=ι exp(−d(xι,xκ)2/2σ2ι )

, pιι = 0,

qιι′ =
(1 + ‖yι − yι′‖2)−1∑
κ6=λ(1 + ‖yκ − yλ)‖2)−1

, qιι = 0,

KL(P ||Q) =
∑
ιι′

pιι′ log
pιι′

qιι′
. (40)

The double sum over ι and ι′ is implemented as a sum over edges e = (ι, ι′) in the kNN graph
of high-dimensional observations xι ∈ X . In the language of this paper, we say that pe ≡ pιι′

quantifies the connectivity of node ι with ι′ in the high-dimensional space X and qe ≡ qιι′ quantifies
the connectivity in the embedding space Y. The optimized cost function hence is

KL(P ||Q) =
∑
e∈EX

pe log
pe
qe
, (41)

where we use the notation EX to indicate that the edge set entering the optimization has been
obtained as a kNN graph in X .
Embedding cost functions as a binary classification problem.
Let us take a different view on the quantification of how faithful the low-dimensional representation
{yi} in Y is to the topology of the high-dimensional representation {xi} in X . Let us define the
ground-truth of this classification problem to be the kNN graph GX = (V,EX ) fitted in X . The
state space of the classification problem is given by the edge set Efc of the fully-connected graph
Gfc = (V,Efc). We note that this is similar to the procedure introduced by [56].
In this classification setting, we require an embedding algorithm to predict for each edge e in Efc

whether it is an element of EX . If it is an element, we assign the label le = 1 to it, otherwise le = 0.
For each edge, the embedding algorithm makes prediction le = 1 with probability qe and le = 0 with
1 − qe. The standard cost function used to train such a classifier is the cross-entropy H(P,Q) or
logloss, which is equivalent to the negative log-likelihood of the labels under the model

H(P,Q) = −
∑
e∈Efc

∑
le∈{0,1}

pe log(qe),

=
∑
e∈Efc

pe log
( 1

qe

)
+ (1− pe) log

( 1

1− qe

)
. (42)

By virtue of KL(P,Q) = H(P,Q)−H(P ) and H(P ) = −
∑

e∈Efc
pe, the KL divergence of predicted

distribution Q and reference distribution P is

KL(P ||Q) =
∑
e∈Efc

∑
le∈{0,1}

pe log
(pe
qe

)
=
∑
e∈Efc

pe log
(pe
qe

)
+ (1− pe) log

(1− pe
1− qe

)
. (43)

As in the optimization of the cost-function, the reference distribution P is fixed, it does not matter
whether cross entropy or KL divergence is optimized.
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Let us continue with interpreting the KL divergence, which both appears in UMAP and tSNE —
however, in the case of tSNE the second term in (43) is absent. We can interpret the two terms in
the KL divergence as follows

pe log

(
pe
qe

)
︸ ︷︷ ︸

cost of “false negatives”,
i.e., disconnected regions

and (1− pe) log
(
1− pe
1− qe

)
︸ ︷︷ ︸

cost of “false positives”
i.e., overlapping regions

. (44)

The first term generates cost that can be attributed to false negatives: edges in EX that are not
“detected” by the embedding algorithm and hence miss in the predicted edge set EY . This occurs
when a pair of points (ι, ι′) is far apart in the embedding space and hence has low or zero predicted
connectivity qιι′ but has high connectivity pιι′ in the reference space X . As the cost function
diverges if any qe = 0 if the corresponding pe 6= 0, such disconnected structure should in theory not
occur. However, it is well-known that tSNE produces many spurious disconnected structures in the
embedding — this can be attributed to the fact that values for qe have to be clipped to finite values
so that the cost function itself remains finite and can be numerically stably optimized. Also UMAP
[14] suffers from this problem.
The second term in (43) can be attributed to false positives: edges predicted by the embedding

algorithm even though they miss in EX . This occurs in “overlapping regions” of the embedding,
where qe is close to 1 even though pe is close to 0. This phenomenon is frequently encountered in
graph drawing algorithms such as ForceAtlas2 [57].
A novel cost function that accounts for global topology.
Both disconnected and overlapping structure in the embedding present strong violations of the

global topology represented by GX that hinder interpretability by humans. However, in the cost
function (43), these violations only contribute as strongly as violations of local topology with a
weight of order

1

|EX ∪ EY |
.

1

kn
, (45)

where the right-hand-side estimate holds for kNN graphs. Hence, for high numbers of observations
n, the cost of violating global topology approaches zero, even though this is in stark contrast to
what is desirable to the human interpreter.
In order to remedy this discrepancy, we suggest a weighted KL (or cross-entropy), which reflects

the desire that edges that violate the global topology carry a higher weight than edges that violate
local topology. Specifically, we suggest

KLgeo(P ||Q) = KLdisc
geo (P ||Q) +KLoverl

geo (P ||Q)

=
∑
e∈Efc

dqe
dpe
pe log

(
pe
qe

)
︸ ︷︷ ︸
disconnected cost

+
dpe
dqe

(1− pe) log
(
1− pe
1− qe

)
︸ ︷︷ ︸

overlapping cost

, (46)

where dpe and dqe denote random-walk based distances in the kNN graphs GX and GY and are hence
estimators of geodesic distances of the manifolds in X and Y. See an extensive review of such
distances in Supplemental Section 2.
Clearly, geodesic distance captures important aspects of the global topology of a manifold. The

interpretation of the factors dqe
dpe

and dpe
dqe

is hence as follows. If there is a globally disconnected region
in the embedding, this causes dqe to diverge to infinity. If the region is also disconnected in the
high-dimensional reference space, the effect cancels out in dqe

dpe
, otherwise, the violation receives a

high weight in (43). The argument is analogous for overlapping regions.
PAGA provides faster convergence and more interpretable single-cell embeddings.
Throughout this paper, established manifold learning algorithms only provided embeddings that

would violate the topology of data found in the high-dimensional feature space, see for instance
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Figure 3. Using (46), we can now quantify these violations and show that PAGA-initialized manifold
learning both provides embeddings that are more faithful to the global topology and allows faster
convergence also with respect to the conventional cost function (43). The results are summarized in
Supplemental Figure S10) for the first two examples shown in Figure 2.

1. The two rows showing different embeddings highlight globally disconnected points (marked as
D0, D1, ...) and globally overlapping points (marked as O0, O1, ...) identified by maximizing
the weight factors dqe

dpe
and dpe

dqe
, respectively. The title of the embeddings show the conventional

KL divergence and the reweighted geodesic KLgeo introduced in (46). Quantitative values
agree with the visual impression except for the FA embedding of Paul et al., which we would
expect to have a higher KLoverl

geo .

2. The two rows showing statistics of KL measures for different embeddings and with or without
initialization with PAGA have been produced by rerunning embedding algorithms 10 times.
They show that either PAGA+FA or PAGA+UMAP achieve the best values throughout.
The right-most panel shows KL values after early stopping, illustrate that already after 50
optimization epochs, KL values comparable to the converged result (≥200 epochs) are obtained.

Supplemental Note 5: Datasets

Supplemental Note 5.1: Simulated dataset for hematopoiesis

We use a literature-curated qualitative – boolean – gene regulatory network of 11 genes that aims
to describe myeloid differentiation [58] and has been used for benchmarking the reconstruction of
gene regulatory network from a single-cell graph of state transitions in Reference [59]. The boolean
network evolves according to

Gata2 = Gata2 ∧ ¬(Gata1 ∧ Fog1) ∧ ¬Pu.1,
Gata1 = (Gata1 ∨ Gata2 ∨ Fli1) ∧ ¬Pu.1,
Fog1 = Gata1,

EKLF = Gata1 ∧ ¬Fli1,
F li1 = Gata1 ∧ ¬EKLF,
SCL = Gata1 ∧ ¬Pu.1, (47)
Cebpa = Cebpa ∧ ¬(Gata1 ∧ Fog1 ∧ SCL),

Pu.1 = (Cebpa ∨ Pu.1) ∧ ¬(Gata1 ∨ Gata2),

cJun = Pu.1 ∧ ¬Gfi1,
EgrNab = (Pu.1 ∧ cJun) ∧ ¬Gfi1,

Gfi1 = Cebpa ∧ ¬EgrNab.

These boolean equations are translated into ordinary differential equations following Reference
[8]. Within Scanpy [6], they are simulated as stochastic differential equations by adding Gaussian
noise.
Simulations result in four classes of realizations of gene expression time series, each of which corre-

sponds to the convergence to an attractor that represents a certain cell fate of myeloid progenitors:
erythrocyte, neutrophil, monocyte and megakaryocyte (Supplemtal Figure S11). We concatenate
four typical realizations (Supplemtal Figure S11c, d) with 160 time steps, which yields 640 data
points in total.
To model clustering, we sample 640 data points from a Gaussian mixture model with two Gaus-

sians and random centers in an 11-dimensional space. The minimal dataset of Figure 2 and Supple-
mental Figure S11 consists of the concatenated data matrices of the simulated myeloid progenitor
development data and the Gaussian mixture model, corresponding to 1280 cells.
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Supplemental Note 5.2: One million neurons

As an input for the PAGA analysis, we used the kNN graph obtained by running the pp.recipe_zheng17
[27] preprocessing function within Scanpy [6] and computing neighbors on 50 principal components.
See Supplemental Figure S12 for visualizations of these data using PAGA and UMAP.

Supplemental Note 5.3: Experimental datasets for hematopoiesis

For preprocessing the data of Paul et al. [1], we used Scanpy’s preprocessing function pp.recipe_zheng17,
for the data of Nestorowa et al. [7], we used pp.recipe_weinreb17. For the data of Dahlin et al. [60],
we used the preprocessing of the original publication. We then computed kNN graphs on 20 principal
components with k = 4 for Paul et al. and Nestorowa et al. and for k = 7 for Dahlin et al., as in
the original publication. PAGA can be applied on the resulting kNN graphs and yields meaningful
results. However, for Figure 2, we further denoised the graph by approximating its adjacency matrix
with the first 15 spectral components. We performed this approximation by recomputing a kNN
graph using the first 15 diffusion components of the PCA-based graph. For this recomputation of
the kNN graph, we used k = 10 for Paul et al. and Nestorowa et al. and for k = 15 for Dahlin et
al.. We note that denoising the kNN graph by a different technique has already been suggested in
Reference [12].
See Supplemental Figure S13 for an example of annotating clusters using PAGA for Paul et al.

[1].

Supplemental Note 5.4: Planaria

For the analysis of the Planaria data of [25], we used the preprocessing of these authors. We
computed a kNN graph on 30 principle components with 30 neighbors.

Supplemental Note 5.5: Zebrafish embryo

As an input for the PAGA analysis, we used the kNN graph and clustering of Wagner et al. [50] as
provided by the authors.

Supplemental Note 5.6: Deep-learning-processed image data

Without extensive preprocessing, the graph of neighborhood relations of data points in gene expres-
sion space is useless if computed with a simple fixed distance metric (euclidian, cosine, correlation-
based, etc.). If one considers the pixel space of images the problem is even worse and it is impossible
to come up with preprocessing methods that lead to a meaningful distance metric. It has recently
been shown that a deep learning model can generate a feature space in which distances reflect the
continuous progression of cell cycle and a disease [28], that is, deep learning can generate a feature
space in which data points are positioned according to biological similarity and by that generates a
distance metric that is much more valuable than a simple fixed distance metric. We demonstrate that
graph abstraction is useful for reconstructing the cell cycle from image data while and identifying a
cluster of damaged cells (Supplementary Figure S14).
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