20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of denitrifying wood chip bioreactors for management of residential non-point sources of nitrogen

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two important and large non-point sources of nitrogen in residential areas that adversely affect water quality are stormwater runoff and effluent from on-site treatment systems. These sources are challenging to control due to their variable flow rates and nitrogen concentrations. Denitrifying bioreactors that employ a lignocellulosic wood chip medium contained within a saturated (anoxic) zone are relatively new technology that can be implemented at the local level to manage residential non-point nitrogen sources. In these systems, wood chips serve as a microbial biofilm support and provide a constant source of organic substrate required for denitrification. Denitrifying wood chip bioreactors for stormwater management include biofilters and bioretention systems modified to include an internal water storage zone; for on-site wastewater, they include upflow packed bed reactors, permeable reactive barriers, and submerged wetlands. Laboratory studies have shown that these bioreactors can achieve nitrate removal efficiencies as high as 80–100% but could provide more fundamental insight into system design and performance. For example, the type and size of the wood chips, hydraulic loading rate, and dormant period between water applications affects the hydrolysis rate of the lignocellulosic substrate, which in turn affects the amount and bioavailability of dissolved organic carbon for denitrification. Additional field studies can provide a better understanding of the effect of varying environmental conditions such as ambient temperature, precipitation rates, household water use rates, and idle periods on nitrogen removal performance. Long-term studies are also essential for understanding operations and maintenance requirements and validating mathematical models that integrate the complex physical, chemical, and biological processes occurring in these systems. Better modeling tools could assist in optimizing denitrifying wood chip bioreactors to meet nutrient reduction goals in urban and suburban watersheds.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: not found
          • Article: not found

          NONPOINT POLLUTION OF SURFACE WATERS WITH PHOSPHORUS AND NITROGEN

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell biology and molecular basis of denitrification.

            W Zumft (1997)
            Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview.

              In nature, cellulose, lignocellulose and lignin are major sources of plant biomass; therefore, their recycling is indispensable for the carbon cycle. Each polymer is degraded by a variety of microorganisms which produce a battery of enzymes that work synergically. In the near future, processes that use lignocellulolytic enzymes or are based on microorganisms could lead to new, environmentally friendly technologies. This study reviews recent advances in the various biological treatments that can turn these three lignicellulose biopolymers into alternative fuels. In addition, biotechnological innovations based on natural delignification and applied to pulp and paper manufacture are also outlined.
                Bookmark

                Author and article information

                Contributors
                emmalopez@mail.usf.edu
                thomas.lynn@tamuk.edu
                petersonm1@mail.usf.edu
                sergas@usf.edu
                jm41@usf.edu
                Journal
                J Biol Eng
                J Biol Eng
                Journal of Biological Engineering
                BioMed Central (London )
                1754-1611
                1 May 2017
                1 May 2017
                2017
                : 11
                : 16
                Affiliations
                [1 ]ISNI 0000 0001 2353 285X, GRID grid.170693.a, Department of Civil & Environmental Engineering, , University of South Florida, ; 4202 E. Fowler Ave./ENB 118, Tampa, FL 33620 USA
                [2 ]GRID grid.264760.1, , Texas A&M University-Kingsville, ; 700 University Blvd./MSC 213, Kingsville, TX 78363 USA
                Article
                57
                10.1186/s13036-017-0057-4
                5410704
                28469703
                c7b69808-4e44-4a8c-aea9-9669651f5c89
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 14 October 2016
                : 28 March 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000139, U.S. Environmental Protection Agency;
                Award ID: 83556901
                Funded by: FundRef http://dx.doi.org/10.13039/100000138, U.S. Department of Education;
                Award ID: P200A090162
                Funded by: National Science Foundation (US)
                Award ID: #1400837
                Categories
                Review
                Custom metadata
                © The Author(s) 2017

                Biotechnology
                eutrophication,green infrastructure,low impact development (lid),on-site wastewater treatment,best management practice (bmp),biofilm,septic systems,stormwater,decentralized treatment,microbiology

                Comments

                Comment on this article