1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sex influences the brain functional connectivity correlates of originality

      research-article
      1 , 2 , , 1
      Scientific Reports
      Nature Publishing Group UK
      Neuroscience, Psychology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Creative cognition is thought to involve two processes, the creation of new ideas and the selection and retention of suitable new ideas. Neuroimaging studies suggest that the Default Mode Network contributes to the creation of new ideas while left inferior frontal and parieto-temporal cortical networks mediate the selection/retention process. Higher levels of activity in the selection/retention have been shown to be associated with stricter criteria for selection and hence the expression of fewer novel ideas. In this study, we examined the brain functional connectivity correlates of an originality score while 27 males and 27 females performed a low and a high demand visual vigilance task. Brain functional connectivity was estimated from the steady state visual evoked potential event related partial coherence. In the male group, we observed a hypothesized left frontal functional connectivity that was negatively correlated with originality in both tasks. By contrast, in the female group no significant correlation between functional connectivity and originality was observed in either task. We interpret the findings to suggest that males and females engaged different functional networks when performing the vigilance tasks. We conclude with a consideration of the possible risks when data pooling across sex in studies of higher cortical function.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          A default mode of brain function.

          A baseline or control state is fundamental to the understanding of most complex systems. Defining a baseline state in the human brain, arguably our most complex system, poses a particular challenge. Many suspect that left unconstrained, its activity will vary unpredictably. Despite this prediction we identify a baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF. The OEF is defined as the ratio of oxygen used by the brain to oxygen delivered by flowing blood and is remarkably uniform in the awake but resting state (e.g., lying quietly with eyes closed). Local deviations in the OEF represent the physiological basis of signals of changes in neuronal activity obtained with functional MRI during a wide variety of human behaviors. We used quantitative metabolic and circulatory measurements from positron-emission tomography to obtain the OEF regionally throughout the brain. Areas of activation were conspicuous by their absence. All significant deviations from the mean hemisphere OEF were increases, signifying deactivations, and resided almost exclusively in the visual system. Defining the baseline state of an area in this manner attaches meaning to a group of areas that consistently exhibit decreases from this baseline, during a wide variety of goal-directed behaviors monitored with positron-emission tomography and functional MRI. These decreases suggest the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The brain's default network: anatomy, function, and relevance to disease.

            Thirty years of brain imaging research has converged to define the brain's default network-a novel and only recently appreciated brain system that participates in internal modes of cognition. Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment. Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system. Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others. Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems. The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation. The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations. These two subsystems converge on important nodes of integration including the posterior cingulate cortex. The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world. We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect size, confidence interval and statistical significance: a practical guide for biologists.

              Null hypothesis significance testing (NHST) is the dominant statistical approach in biology, although it has many, frequently unappreciated, problems. Most importantly, NHST does not provide us with two crucial pieces of information: (1) the magnitude of an effect of interest, and (2) the precision of the estimate of the magnitude of that effect. All biologists should be ultimately interested in biological importance, which may be assessed using the magnitude of an effect, but not its statistical significance. Therefore, we advocate presentation of measures of the magnitude of effects (i.e. effect size statistics) and their confidence intervals (CIs) in all biological journals. Combined use of an effect size and its CIs enables one to assess the relationships within data more effectively than the use of p values, regardless of statistical significance. In addition, routine presentation of effect sizes will encourage researchers to view their results in the context of previous research and facilitate the incorporation of results into future meta-analysis, which has been increasingly used as the standard method of quantitative review in biology. In this article, we extensively discuss two dimensionless (and thus standardised) classes of effect size statistics: d statistics (standardised mean difference) and r statistics (correlation coefficient), because these can be calculated from almost all study designs and also because their calculations are essential for meta-analysis. However, our focus on these standardised effect size statistics does not mean unstandardised effect size statistics (e.g. mean difference and regression coefficient) are less important. We provide potential solutions for four main technical problems researchers may encounter when calculating effect size and CIs: (1) when covariates exist, (2) when bias in estimating effect size is possible, (3) when data have non-normal error structure and/or variances, and (4) when data are non-independent. Although interpretations of effect sizes are often difficult, we provide some pointers to help researchers. This paper serves both as a beginner's instruction manual and a stimulus for changing statistical practice for the better in the biological sciences.
                Bookmark

                Author and article information

                Contributors
                rsilberstein@swin.edu.au
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                2 December 2021
                2 December 2021
                2021
                : 11
                : 23269
                Affiliations
                [1 ]GRID grid.1027.4, ISNI 0000 0004 0409 2862, Centre for Human Psychopharmacology, , Swinburne University, ; Level 3, Building B, 192 Burwood Road, Hawthorn, VIC 3122 Australia
                [2 ]Neuro-Insight Pty Ltd, Melbourne, 3122 Australia
                Article
                2674
                10.1038/s41598-021-02674-5
                8640048
                34857822
                b7233402-46b0-4adb-b1ae-d3d094546c76
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 9 March 2021
                : 17 November 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                neuroscience,psychology
                Uncategorized
                neuroscience, psychology

                Comments

                Comment on this article