40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To date, the parameters that determine the rupture area of great subduction zone earthquakes remain contentious. On 1 April 2014, the Mw 8.1 Iquique earthquake ruptured a portion of the well-recognized northern Chile seismic gap but left large highly coupled areas un-ruptured. Marine seismic reflection and swath bathymetric data indicate that structural variations in the subducting Nazca Plate control regional-scale plate-coupling variations, and the limited extent of the 2014 earthquake. Several under-thrusting seamounts correlate to the southward and up-dip arrest of seismic rupture during the 2014 Iquique earthquake, thus supporting a causal link. By fracturing of the overriding plate, the subducting seamounts are likely further responsible for reduced plate-coupling in the shallow subduction zone and in a lowly coupled region around 20.5°S. Our data support that structural variations in the lower plate influence coupling and seismic rupture offshore Northern Chile, whereas the structure of the upper plate plays a minor role.

          Abstract

          On 1 April 2014 the Mw 8.1 Iquique earthquake seemed to close the well-recognized northern Chile seismic gap, producing only a small rupture. Here, the authors present seismic reflection and multibeam bathymetry data from the area suggesting that seamount subduction played a role in halting the rupture.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          The 2011 magnitude 9.0 Tohoku-Oki earthquake: mosaicking the megathrust from seconds to centuries.

          Geophysical observations from the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki, Japan earthquake allow exploration of a rare large event along a subduction megathrust. Models for this event indicate that the distribution of coseismic fault slip exceeded 50 meters in places. Sources of high-frequency seismic waves delineate the edges of the deepest portions of coseismic slip and do not simply correlate with the locations of peak slip. Relative to the M(w) 8.8 2010 Maule, Chile earthquake, the Tohoku-Oki earthquake was deficient in high-frequency seismic radiation--a difference that we attribute to its relatively shallow depth. Estimates of total fault slip and surface secular strain accumulation on millennial time scales suggest the need to consider the potential for a future large earthquake just south of this event.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake.

            The subduction zone in northern Chile is a well-identified seismic gap that last ruptured in 1877. The moment magnitude (Mw) 8.1 Iquique earthquake of 1 April 2014 broke a highly coupled portion of this gap. To understand the seismicity preceding this event, we studied the location and mechanisms of the foreshocks and computed Global Positioning System (GPS) time series at stations located on shore. Seismicity off the coast of Iquique started to increase in January 2014. After 16 March, several Mw > 6 events occurred near the low-coupled zone. These events migrated northward for ~50 kilometers until the 1 April earthquake occurred. On 16 March, on-shore continuous GPS stations detected a westward motion that we model as a slow slip event situated in the same area where the mainshock occurred.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake.

              On 1 April 2014, Northern Chile was struck by a magnitude 8.1 earthquake following a protracted series of foreshocks. The Integrated Plate Boundary Observatory Chile monitored the entire sequence of events, providing unprecedented resolution of the build-up to the main event and its rupture evolution. Here we show that the Iquique earthquake broke a central fraction of the so-called northern Chile seismic gap, the last major segment of the South American plate boundary that had not ruptured in the past century. Since July 2013 three seismic clusters, each lasting a few weeks, hit this part of the plate boundary with earthquakes of increasing peak magnitudes. Starting with the second cluster, geodetic observations show surface displacements that can be associated with slip on the plate interface. These seismic clusters and their slip transients occupied a part of the plate interface that was transitional between a fully locked and a creeping portion. Leading up to this earthquake, the b value of the foreshocks gradually decreased during the years before the earthquake, reversing its trend a few days before the Iquique earthquake. The mainshock finally nucleated at the northern end of the foreshock area, which skirted a locked patch, and ruptured mainly downdip towards higher locking. Peak slip was attained immediately downdip of the foreshock region and at the margin of the locked patch. We conclude that gradual weakening of the central part of the seismic gap accentuated by the foreshock activity in a zone of intermediate seismic coupling was instrumental in causing final failure, distinguishing the Iquique earthquake from most great earthquakes. Finally, only one-third of the gap was broken and the remaining locked segments now pose a significant, increased seismic hazard with the potential to host an earthquake with a magnitude of >8.5.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                30 September 2015
                2015
                : 6
                : 8267
                Affiliations
                [1 ]GEOMAR Helmholtz Centre for Ocean Research Kiel , Wischhofstrasse 1-3, 24148 Kiel, Germany
                [2 ]Barcelona Center for Subsurface Imaging, Instituto de Ciencias del Mar, ICREA at CSIC , Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
                [3 ]Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) , Stilleweg 2, 30655 Hannover, Germany
                Author notes
                Article
                ncomms9267
                10.1038/ncomms9267
                4667434
                26419949
                aae1529c-681d-460e-ad6f-0eb40f54632a
                Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 18 March 2015
                : 04 August 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article