52
views
0
recommends
+1 Recommend
4 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessing the Vulnerability of Agriculture Systems to Climate Change in Coastal Areas: A Novel Index

      , , ,  
      Sustainability
      MDPI AG

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study proposes a novel index to evaluate agricultural vulnerability to climate change in coastal areas, using the case of Andhra Pradesh, the state with the second longest coastline in India. Field data was collected from more than 1000 farmers (involved in over 50 varieties of crops) in 22 riverine and coastal case study areas. Data was collected through site visits, surveys and five workshops conducted between November 2018 and June 2019. Based on the collected data sets, a new Agricultural Coastal Vulnerability Index (AGCVI) was developed and applied to the 22 sites located in two districts (Krishna and Guntur) of Coastal Andhra Pradesh. The analysis revealed that the areas with three crop seasons (Kharif, Rabi and Zaid) per year are highly vulnerable to climate change. On the other hand, sites with one crop season (Kharif) per annum are the least vulnerable to climate change. Moreover, grains (particularly rice), flowers and fruit crops are more susceptible to climate change and its induced impacts. Rice is no longer a profitable crop in the case study areas partly as a result of unfavourable weather conditions, inadequate insurance provision and lack of government support for farmers. Cumulatively, all these circumstances impact farmers’ incomes and socio-cultural practices: this is leading to a marriage crisis, with a reduction in the desirability of matrimony to farmers. These findings provide valuable information that can support climate and agriculture policies, as well as sustainable cropping patterns among farmers’ communities in coastal areas of India in the future.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Future urban land expansion and implications for global croplands

          Urbanization’s contribution to land use change emerges as an important sustainability concern. Here, we demonstrate that projected urban area expansion will take place on some of the world’s most productive croplands, in particular in megaurban regions in Asia and Africa. This dynamic adds pressure to potentially strained future food systems and threatens livelihoods in vulnerable regions. Urban expansion often occurs on croplands. However, there is little scientific understanding of how global patterns of future urban expansion will affect the world’s cultivated areas. Here, we combine spatially explicit projections of urban expansion with datasets on global croplands and crop yields. Our results show that urban expansion will result in a 1.8–2.4% loss of global croplands by 2030, with substantial regional disparities. About 80% of global cropland loss from urban expansion will take place in Asia and Africa. In both Asia and Africa, much of the cropland that will be lost is more than twice as productive as national averages. Asia will experience the highest absolute loss in cropland, whereas African countries will experience the highest percentage loss of cropland. Globally, the croplands that are likely to be lost were responsible for 3–4% of worldwide crop production in 2000. Urban expansion is expected to take place on cropland that is 1.77 times more productive than the global average. The loss of cropland is likely to be accompanied by other sustainability risks and threatens livelihoods, with diverging characteristics for different megaurban regions. Governance of urban area expansion thus emerges as a key area for securing livelihoods in the agrarian economies of the Global South.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Climate change impacts on crop productivity in Africa and South Asia

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Social-ecological resilience to coastal disasters.

              Social and ecological vulnerability to disasters and outcomes of any particular extreme event are influenced by buildup or erosion of resilience both before and after disasters occur. Resilient social-ecological systems incorporate diverse mechanisms for living with, and learning from, change and unexpected shocks. Disaster management requires multilevel governance systems that can enhance the capacity to cope with uncertainty and surprise by mobilizing diverse sources of resilience.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                June 2020
                June 11 2020
                : 12
                : 11
                : 4771
                Article
                10.3390/su12114771
                a75267a1-963d-404e-9e97-eda4a0501444
                © 2020

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article