26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microarray analysis on germfree mice elucidates the primary target of a traditional Japanese medicine juzentaihoto: acceleration of IFN-α response via affecting the ISGF3-IRF7 signaling cascade

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The traditional Japanese medicine juzentaihoto (JTX) is a pharmaceutical grade multi-herbal medicine widely used for the prevention of cancer metastasis and infection in immuno-compromized patients in Japan. The effect of JTX has been supposed to be intimately affected by the immunological properties of host and enteric microflora. The influence of JTX on the gene expression profile in the large and small intestines was investigated by microarray analyses using mice of different strains with or without enteric microflora.

          Results

          In all types of mice, including germfree (GF) animals, the genes most affected by two-week oral JTX treatment were the type 1 interferon (IFN)-related genes including Stat1, Isgf3g and Irf7, which play a critical role in the feedback loop of IFN-α production cascade. In IQI specific pathogen free (SPF) mice JTX increased the steady state level of the expression of IFN-related genes, but had the opposite effect in IQI GF and BALB/c SPF mice. Promoter analysis suggests that tandem repeated $IRFF (the promoter sequences for interferon regulatory factors) may be a primary target for JTX action. Pre-treatment of JTX accelerated the effects of an oral IFN "inducer" 2-amino-5-bromo-6-methyl-4-pyrimidinol (ABMP) (up-regulation of IFN-α production in IQI strain and down-regulation in BALB/c mice), which is in good accordance with the effect of JTX on gene expression of type 1 IFN-related genes.

          Conclusions

          Microarray analysis revealed that the target of JTX might be the transcription machinery regulating the steady-state level of genes involved in the ISGF3-IRF7 cascade, whose effect is bi-directional in a strain- and microbiota-dependent manner.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          A weak signal for strong responses: interferon-alpha/beta revisited.

          Biological systems have acquired adaptability and robustness against rapid environmental changes. A typical example is the immune system, which eradicates invading pathogens such as viruses. Interferons alpha and beta, which are produced in response to viral infection, are essential components of this system but are also produced at low levels in the absence of infection. What is the purpose of the constitutive weak interferon-alpha/beta signal?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces

            Background Early microbial colonization of the gut reduces the incidence of infectious, inflammatory and autoimmune diseases. Recent population studies reveal that childhood hygiene is a significant risk factor for development of inflammatory bowel disease, thereby reinforcing the hygiene hypothesis and the potential importance of microbial colonization during early life. The extent to which early-life environment impacts on microbial diversity of the adult gut and subsequent immune processes has not been comprehensively investigated thus far. We addressed this important question using the pig as a model to evaluate the impact of early-life environment on microbe/host gut interactions during development. Results Genetically-related piglets were housed in either indoor or outdoor environments or in experimental isolators. Analysis of over 3,000 16S rRNA sequences revealed major differences in mucosa-adherent microbial diversity in the ileum of adult pigs attributable to differences in early-life environment. Pigs housed in a natural outdoor environment showed a dominance of Firmicutes, in particular Lactobacillus, whereas animals housed in a hygienic indoor environment had reduced Lactobacillus and higher numbers of potentially pathogenic phylotypes. Our analysis revealed a strong negative correlation between the abundance of Firmicutes and pathogenic bacterial populations in the gut. These differences were exaggerated in animals housed in experimental isolators. Affymetrix microarray technology and Real-time Polymerase Chain Reaction revealed significant gut-specific gene responses also related to early-life environment. Significantly, indoor-housed pigs displayed increased expression of Type 1 interferon genes, Major Histocompatibility Complex class I and several chemokines. Gene Ontology and pathway analysis further confirmed these results. Conclusion Early-life environment significantly affects both microbial composition of the adult gut and mucosal innate immune function. We observed that a microbiota dominated by lactobacilli may function to maintain mucosal immune homeostasis and limit pathogen colonization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of the type I IFN induction: a current view.

              The type I IFN-alpha/beta gene family was identified about a quarter of a century ago as a prototype of many cytokine gene families, which led to the subsequent burst of studies on molecular mechanisms underlying cytokine gene expression and signaling. Although originally discovered for their activity to confer an antiviral state on cells, more evidence has recently been emerging regarding IFN-alpha/beta actions on cell growth, differentiation and many immunoregulatory activities, which are of even greater fundamental biological significance. Indeed, much attention has recently been focused on the induction and function of the IFN-alpha/beta system regulated by Toll-like receptors (TLRs), which are critical for linking the innate and adaptive immunities. The understanding of the regulatory mechanisms of IFN-alpha/beta gene induction by TLRs and viruses is an emerging theme, for which much new insight has been gained over the past few years.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2012
                18 January 2012
                : 13
                : 30
                Affiliations
                [1 ]Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
                [2 ]Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki 300-1192, Japan
                [3 ]Central Institute for Experimental Animals, 1430 Nogawa, Miyamae-ku, Kawasaki, Kanagawa 216-0001, Japan
                Article
                1471-2164-13-30
                10.1186/1471-2164-13-30
                3298487
                22257721
                a5a5d948-8c5c-4c08-8600-bebf9866d758
                Copyright ©2012 Munakata et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 September 2011
                : 18 January 2012
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article