37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improving Pharmacokinetic-Pharmacodynamic Modeling to Investigate Anti-Infective Chemotherapy with Application to the Current Generation of Antimalarial Drugs

      research-article
      * ,
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mechanism-based pharmacokinetic-pharmacodynamic (PK/PD) modelling is the standard computational technique for simulating drug treatment of infectious diseases with the potential to enhance our understanding of drug treatment outcomes, drug deployment strategies, and dosing regimens. Standard methodologies assume only a single drug is used, it acts only in its unconverted form, and that oral drugs are instantaneously absorbed across the gut wall to their site of action. For drugs with short half-lives, this absorption period accounts for a significant period of their time in the body. Treatment of infectious diseases often uses combination therapies, so we refined and substantially extended the PK/PD methodologies to incorporate (i) time lags and drug concentration profiles resulting from absorption across the gut wall and, if required, conversion to another active form; (ii) multiple drugs within a treatment combination; (iii) differing modes of action of drugs in the combination: additive, synergistic, antagonistic; (iv) drugs converted to an active metabolite with a similar mode of action. This methodology was applied to a case study of two first-line malaria treatments based on artemisinin combination therapies (ACTs, artemether-lumefantrine and artesunate-mefloquine) where the likelihood of increased artemisinin tolerance/resistance has led to speculation on their continued long-term effectiveness. We note previous estimates of artemisinin kill rate were underestimated by a factor of seven, both the unconverted and converted form of the artemisinins kill parasites and the extended PK/PD methodology produced results consistent with field observations. The simulations predict that a potentially rapid decline in ACT effectiveness is likely to occur as artemisinin resistance spreads, emphasising the importance of containing the spread of artemisinin resistance before it results in widespread drug failure. We found that PK/PD data is generally very poorly reported in the malaria literature, severely reducing its value for subsequent re-application, and we make specific recommendations to improve this situation.

          Author Summary

          Pharmacokinetic-pharmacodynamic (PK/PD) models of infectious diseases provide vital insights into the effectiveness of drug treatments (including the optimal dosage level, frequency and duration) by explicitly relating drug concentration after treatment to a pathogen kill rate, and ultimately the models describe whether an infection is likely to be cleared. Furthermore, they can address issues such as poor patient compliance and the spread of drug resistance that are too expensive and/or unethical to determine in the field. Despite their potential, the methodologies used in previous PK/PD models have been based upon the assumptions that only one drug is used in treatment, that the drug is immediately available in its active form at the site of action, and that the parent drug is not further converted to active metabolites. These assumptions severely limit the application of such models. We therefore extend the methodology to remove these assumptions and use this model to investigate two first-line treatments of malaria. The model accurately replicated field data and was then used to predict the impact of increasing drug tolerance and resistance on treatment outcome. We identified key PK/PD data that can, and should, be measured and reported in future field studies to maximise the predictive ability of mathematical models.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Artemisinin resistance: current status and scenarios for containment.

          Artemisinin combination therapies are the first-line treatments for uncomplicated Plasmodium falciparum malaria in most malaria-endemic countries. Recently, partial artemisinin-resistant P. falciparum malaria has emerged on the Cambodia-Thailand border. Exposure of the parasite population to artemisinin monotherapies in subtherapeutic doses for over 30 years, and the availability of substandard artemisinins, have probably been the main driving force in the selection of the resistant phenotype in the region. A multifaceted containment programme has recently been launched, including early diagnosis and appropriate treatment, decreasing drug pressure, optimising vector control, targeting the mobile population, strengthening management and surveillance systems, and operational research. Mathematical modelling can be a useful tool to evaluate possible strategies for containment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Genetic diversity among Plasmodium falciparum field isolates in Pakistan measured with PCR genotyping of the merozoite surface protein 1 and 2

            Background The genetic diversity of Plasmodium falciparum has been extensively studied in various parts of the world. However, limited data are available from Pakistan. This study aimed to establish molecular characterization of P. falciparum field isolates in Pakistan measured with two highly polymorphic genetic markers, i.e. the merozoite surface protein 1 (msp-1)and 2 (msp-2). Methods Between October 2005 and October 2007, 244 blood samples from patients with symptomatic blood-slide confirmed P. falciparum mono-infections attending the Aga Khan University Hospital, Karachi, or its collection units located in Sindh and Baluchistan provinces, Pakistan were collected. The genetic diversity of P. falciparum was analysed by length polymorphism following gel electrophoresis of DNA products from nested polymerase chain reactions (PCR) targeting block 2 of msp-1 and block 3 of msp-2, including their respective allelic families KI, MAD 20, RO33, and FC27, 3D7/IC. Results A total of 238/244 (98%) patients had a positive PCR outcome in at least one genetic marker; the remaining six were excluded from analysis. A majority of patients had monoclonal infections. Only 56/231 (24%) and 51/236 (22%) carried multiple P. falciparum genotypes in msp-1 and msp-2, respectively. The estimated total number of genotypes was 25 msp-1 (12 KI; 8 MAD20; 5 RO33) and 33 msp-2 (14 FC27; 19 3D7/IC). Conclusions This is the first report on molecular characterization of P. falciparum field isolates in Pakistan with regards to multiplicity of infection. The genetic diversity and allelic distribution found in this study is similar to previous reports from India and Southeast Asian countries with low malaria endemicity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artesunate combinations for treatment of malaria: meta-analysis.

              Addition of artemisinin derivatives to existing drug regimens for malaria could reduce treatment failure and transmission potential. We assessed the evidence for this hypothesis from randomised controlled trials. We undertook a meta-analysis of individual patients' data from 16 randomised trials (n=5948) that studied the effects of the addition of artesunate to standard treatment of Plasmodium falciparum malaria. We estimated odds ratios (OR) of parasitological failure at days 14 and 28 (artesunate combination compared with standard treatment) and calculated combined summary ORs across trials using standard methods. For all trials combined, parasitological failure was lower with 3 days of artesunate at day 14 (OR 0.20, 95% CI 0.17-0.25, n=4504) and at day 28 (excluding new infections, 0.23, 0.19-0.28, n=2908; including re-infections, 0.30, 0.26-0.35, n=4332). Parasite clearance was significantly faster (rate ratio 1.98, 95% CI 1.85-2.12, n=3517) with artesunate. In participants with no gametocytes at baseline, artesunate reduced gametocyte count on day 7 (OR 0.11, 95% CI 0.09-0.15, n=2734), with larger effects at days 14 and 28. Adding artesunate for 1 day (six trials) was associated with fewer failures by day 14 (0.61, 0.48-0.77, n=1980) and day 28 (adjusted to exclude new infections 0.68, 0.53-0.89, n=1205; unadjusted including reinfections 0.77, 0.63-0.95, n=1958). In these trials, gametocytes were reduced by day 7 (in participants with no gametocytes at baseline 0.11, 0.09-0.15, n=2734). The occurrence of serious adverse events did not differ significantly between artesunate and placebo. The addition of 3 days of artesunate to standard antimalarial treatments substantially reduce treatment failure, recrudescence, and gametocyte carriage.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                July 2013
                July 2013
                18 July 2013
                : 9
                : 7
                : e1003151
                Affiliations
                [1]Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
                Imperial College London, United Kingdom
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: KK IMH. Performed the experiments: KK. Analyzed the data: KK IMH. Wrote the paper: KK IMH. Conceived the study, developed its mathematical underpinning, interpreted the results and wrote the manuscript: KK IMH. Wrote the computer code and calibrated and ran the simulations: KK.

                Article
                PCOMPBIOL-D-13-00001
                10.1371/journal.pcbi.1003151
                3715401
                23874190
                949f65a5-15c6-43ef-8db1-f28657871ff9
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 December 2012
                : 7 June 2013
                Page count
                Pages: 12
                Funding
                This work was supported by the Swiss Tropical and Public Health Institute and the Liverpool School of Tropical Medicine and funded by the Bill and Melinda Gates Foundation, grant 37999.01, and the Medical Research Council, grant G110052. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Population Modeling
                Infectious Disease Modeling
                Medicine
                Drugs and Devices
                Pharmacodynamics
                Pharmacokinetics
                Infectious Diseases
                Parasitic Diseases
                Malaria
                Tropical Diseases (Non-Neglected)
                Malaria
                Infectious Disease Modeling

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article