13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loophole-free test of macroscopic realism via high-order correlations of measurement

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Test of {macroscopic realism} (MR) is key to understanding the foundation of quantum mechanics. Due to the existence of the {non-invasive measurability} loophole and other interpretation loopholes, however, such test remains an open question. Here we propose a general inequality based on high-order correlations of measurements for a loophole-free test of MR at the weak signal limit. Importantly, the inequality is established using the statistics of \textit{raw data} recorded by classical devices, without requiring a specific model for the measurement process, so its violation would falsify MR without the interpretation loophole. The non-invasive measurability loophole is also closed, since the weak signal limit can be verified solely by measurement data (using the relative scaling behaviors of different orders of correlations). We demonstrate that the inequality can be broken by a quantum spin model. The inequality proposed here provides an unambiguous test of the MR principle and is also useful to characterizing {quantum coherence}.

          Related collections

          Author and article information

          Journal
          10 January 2024
          Article
          2401.05246
          925bff19-e084-476d-8857-1e74519c983b

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          quant-ph

          Quantum physics & Field theory
          Quantum physics & Field theory

          Comments

          Comment on this article