189
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Angiosperm-like pollen and Afropollis from the Middle Triassic (Anisian) of the Germanic Basin (Northern Switzerland)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here we report on angiosperm-like pollen and Afropollis from the Anisian (Middle Triassic, 247.2–242.0 Ma) of a mid-latitudinal site in Northern Switzerland. Small monosulcate pollen grains with typical reticulate (semitectate) sculpture, columellate structure of the sexine and thin nexine show close similarities to early angiosperm pollen known from the Early Cretaceous. However, they differ in their extremely thin inner layer (nexine). Six different pollen types (I–VI) are differentiated based on size, reticulation pattern, and exine structure. The described pollen grains show all the essential features of angiosperm pollen. However, considering the lack of a continuous record throughout the lower part of the Mesozoic and the comparison with the oldest Cretaceous finds we suggest an affinity to an angiosperm stem group. Together with the previously published records from the Middle Triassic of the Barents Sea area the angiosperm-like pollen grains reflect a considerable diversity of the parent plants during the Middle Triassic. Sedimentological evidence and associated palynofloras also suggest a remarkable ecological range for these plants. Associated with these grains we found pollen comparable to the genus Afropollis. Representatives of this genus are commonly recorded in Lower Cretaceous sediments of low latitudes, but until now had no record from the lower part of the Mesozoic.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          The age and diversification of the angiosperms re-revisited.

          • It has been 8 years since the last comprehensive analysis of divergence times across the angiosperms. Given recent methodological improvements in estimating divergence times, refined understanding of relationships among major angiosperm lineages, and the immense interest in using large angiosperm phylogenies to investigate questions in ecology and comparative biology, new estimates of the ages of the major clades are badly needed. Improved estimations of divergence times will concomitantly improve our understanding of both the evolutionary history of the angiosperms and the patterns and processes that have led to this highly diverse clade. • We simultaneously estimated the age of the angiosperms and the divergence times of key angiosperm lineages, using 36 calibration points for 567 taxa and a "relaxed clock" methodology that does not assume any correlation between rates, thus allowing for lineage-specific rate heterogeneity. • Based on the analysis for which we set fossils to fit lognormal priors, we obtained an estimated age of the angiosperms of 167-199 Ma and the following age estimates for major angiosperm clades: Mesangiospermae (139-156 Ma); Gunneridae (109-139 Ma); Rosidae (108-121 Ma); Asteridae (101-119 Ma). • With the exception of the age of the angiosperms themselves, these age estimates are generally younger than other recent molecular estimates and very close to dates inferred from the fossil record. We also provide dates for all major angiosperm clades (including 45 orders and 335 families [208 stem group age only, 127 both stem and crown group ages], sensu APG III). Our analyses provide a new comprehensive source of reference dates for major angiosperm clades that we hope will be of broad utility.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Fossil pollen records of extant angiosperms

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants.

              We present molecular dating analyses for land plants that incorporate 33 fossil calibrations, permit rates of molecular evolution to be uncorrelated across the tree, and take into account uncertainties in phylogenetic relationships and the fossil record. We attached a prior probability to each fossil-based minimum age, and explored the effects of relying on the first appearance of tricolpate pollen grains as a lower bound for the age of eudicots. Many of our divergence-time estimates for major clades coincide well with both the known fossil record and with previous estimates. However, our estimates for the origin of crown-clade angiosperms, which center on the Late Triassic, are considerably older than the unequivocal fossil record of flowering plants or than the molecular dates presented in recent studies. Nevertheless, we argue that our older estimates should be taken into account in studying the causes and consequences of the angiosperm radiation in relation to other major events, including the diversification of holometabolous insects. Although the methods used here do help to correct for lineage-specific heterogeneity in rates of molecular evolution (associated, for example, with evolutionary shifts in life history), we remain concerned that some such effects (e.g., the early radiation of herbaceous clades within angiosperms) may still be biasing our inferences.
                Bookmark

                Author and article information

                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                01 October 2013
                2013
                : 4
                : 344
                Affiliations
                [1] 1Palaeontological Institute and Museum, University of Zürich Zürich, Switzerland
                [2] 2Dr. Susanne Feist-Burkhardt Geological Consulting & Services Ober-Ramstadt, Germany
                Author notes

                Edited by: Xin Wang, Chinese Academy of Sciences, China

                Reviewed by: Michael S. Zavada, Seton Hall University, USA; James A. Doyle, University of California, Davis, USA; Evelyn Kustatscher, Naturmuseum Südtirol, Italy; Limi Mao, Nanjing Institute of Geology and Palaeontology, China

                *Correspondence: Peter A. Hochuli, Palaeontological Institute and Museum, University of Zürich, Karl-Schmid-Strasse 4, Zürich, CH-8006, Switzerland e-mail: peter.hochuli@ 123456erdw.ethz.ch

                This article was submitted to Plant Evolution and Development, a section of the journal Frontiers in Plant Science.

                Article
                10.3389/fpls.2013.00344
                3788615
                24106492
                8a9d6f61-f3e9-43f0-8560-0ec6f23552ed
                Copyright © 2013 Hochuli and Feist-Burkhardt.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 May 2013
                : 15 August 2013
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 97, Pages: 14, Words: 8906
                Categories
                Plant Science
                Original Research Article

                Plant science & Botany
                middle triassic,angiosperm-like pollen,angiosperm stem group,afropollis,confocal laser scanning microscopy

                Comments

                Comment on this article