11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inactivation of SARS-CoV-2 by 2 Commercially Available Benzalkonium Chloride-Based Hand Sanitizers in Comparison with an 80% Ethanol-Based Hand Sanitizer

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The CDC and WHO recommend alcohol-based hand sanitizers to inactivate severe acute respiratory syndrome coronavirus-2 [SARS-CoV-2].

          Aim

          Benzalkonium chloride [BAK] is another hand sanitizer active ingredient that could be used in response to the global pandemic. Deployment of BAK-based hand sanitizers could reduce shortages of alcohol products and increase hand hygiene options where there are social, physical, and toxicological constraints on alcohol use.

          Methods

          Two commercially available BAK-based hand sanitizers, a concentrate diluted on-site with water and a ready-to-use product, were tested for activity against SARS-CoV-2 in the European Norm Virucidal Activity Suspension Test [EN14476]. A WHO and CDC-recommended 80% alcohol-based hand sanitizer formulation was tested in parallel.

          Findings

          Both BAK formulations demonstrated a ≥4.0 log 10 reduction of SARS-CoV-2 in 30 seconds, meeting the EN14476 performance standard for virucidal activity against SARS-CoV-2 and matching the in vitro effectiveness of the ethanol-based sanitizer.

          Conclusion

          These findings indicate that a commercial BAK hand hygiene formulation may be another effective means of inactivating the SARS-CoV-2 virus and could be considered as option for pandemic response.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents

          Summary Currently, the emergence of a novel human coronavirus, SARS-CoV-2, has become a global health concern causing severe respiratory tract infections in humans. Human-to-human transmissions have been described with incubation times between 2-10 days, facilitating its spread via droplets, contaminated hands or surfaces. We therefore reviewed the literature on all available information about the persistence of human and veterinary coronaviruses on inanimate surfaces as well as inactivation strategies with biocidal agents used for chemical disinfection, e.g. in healthcare facilities. The analysis of 22 studies reveals that human coronaviruses such as Severe Acute Respiratory Syndrome (SARS) coronavirus, Middle East Respiratory Syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV) can persist on inanimate surfaces like metal, glass or plastic for up to 9 days, but can be efficiently inactivated by surface disinfection procedures with 62–71% ethanol, 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Other biocidal agents such as 0.05–0.2% benzalkonium chloride or 0.02% chlorhexidine digluconate are less effective. As no specific therapies are available for SARS-CoV-2, early containment and prevention of further spread will be crucial to stop the ongoing outbreak and to control this novel infectious thread.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stability of SARS-CoV-2 in different environmental conditions

            We previously reported the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in different clinical samples. 1 This virus can be detected on different surfaces in a contaminated site. 2 Here, we report the stability of SARS-CoV-2 in different environmental conditions. We first measured the stability of SARS-CoV-2 at different temperatures. SARS-CoV-2 in virus transport medium (final concentration ∼6·8 log unit of 50% tissue culture infectious dose [TCID50] per mL) was incubated for up to 14 days and then tested for its infectivity (appendix p 1). The virus is highly stable at 4°C, but sensitive to heat. At 4°C, there was only around a 0·7 log-unit reduction of infectious titre on day 14. With the incubation temperature increased to 70°C, the time for virus inactivation was reduced to 5 mins. We further investigated the stability of this virus on different surfaces. Briefly, a 5 μL droplet of virus culture (∼7·8 log unit of TCID50 per mL) was pipetted on a surface (appendix p 1; ∼cm2 per piece) and left at room temperature (22°C) with a relative humidity of around 65%. The inoculated objects retrieved at desired time-points were immediately soaked with 200 μL of virus transport medium for 30 mins to elute the virus. Therefore, this recovery of virus does not necessarily reflect the potential to pick up the virus from casual contact. No infectious virus could be recovered from printing and tissue papers after a 3-hour incubation, whereas no infectious virus could be detected from treated wood and cloth on day 2. By contrast, SARS-CoV-2 was more stable on smooth surfaces. No infectious virus could be detected from treated smooth surfaces on day 4 (glass and banknote) or day 7 (stainless steel and plastic). Strikingly, a detectable level of infectious virus could still be present on the outer layer of a surgical mask on day 7 (∼0·1% of the original inoculum). Interestingly, a biphasic decay of infectious SARS-CoV-2 could be found in samples recovered from these smooth surfaces (appendix pp 2–7). 39 representative non-infectious samples tested positive by RT-PCR 3 (data not shown), showing that non-infectious viruses could still be recovered by the eluents. We also tested the virucidal effects of disinfectants by adding 15 μL of SARS-CoV-2 culture (∼7·8 log unit of TCID50 per mL) to 135 μL of various disinfectants at working concentration (appendix p 1). With the exception of a 5-min incubation with hand soap, no infectious virus could be detected after a 5-min incubation at room temperature (22°C). Additionally, we also found that SARS-CoV-2 is extremely stable in a wide range of pH values at room temperature (pH 3–10; appendix p 1). Overall, SARS-CoV-2 can be highly stable in a favourable environment, 4 but it is also susceptible to standard disinfection methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 by WHO-Recommended Hand Rub Formulations and Alcohols

              Infection control instructions call for use of alcohol-based hand rub solutions to inactivate severe acute respiratory syndrome coronavirus 2. We determined the virucidal activity of World Health Organization–recommended hand rub formulations, at full strength and multiple dilutions, and of the active ingredients. All disinfectants demonstrated efficient virus inactivation.
                Bookmark

                Author and article information

                Journal
                Infect Prev Pract
                Infect Prev Pract
                Infection Prevention in Practice
                Published by Elsevier Ltd on behalf of The Healthcare Infection Society.
                2590-0889
                25 November 2021
                25 November 2021
                : 100191
                Affiliations
                [a ]Ecolab Inc. Eagan, Minnesota, USA
                [b ]Microbac Laboratories, Inc. Sterling, Virginia, USA
                Author notes
                []Corresponding author. Brandon Herdt, Ecolab Incorporated, 655 Lone Oak Drive, Eagan, Minnesota 55121, , Tel.: +1 651-796-5828.
                Article
                S2590-0889(21)00080-9 100191
                10.1016/j.infpip.2021.100191
                8613930
                34853831
                71ac3e37-d71f-4ade-9e43-61aebc141d6a
                © 2021 Published by Elsevier Ltd on behalf of The Healthcare Infection Society.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 17 May 2021
                : 19 November 2021
                Categories
                Article

                benzalkonium chloride [bak],sars-cov-2,hand hygiene,sanitizer,alcohol

                Comments

                Comment on this article