7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacterial Contamination on Latrine Surfaces in Community and Household Latrines in Kathmandu, Nepal

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A lack of sanitation infrastructure is a major contributor to the global burden of diarrheal disease, particularly in low-income countries. Access to basic sanitation was identified as part of the 2015 United Nations Sustainable Development Goals. However, current definitions of “basic” sanitation infrastructure exclude community or shared sanitation, due to concerns around safety, equity, and cleanliness. The purpose of this study was to measure and compare bacterial contamination on community and household latrine surfaces in Kathmandu, Nepal. One hundred and nineteen swab samples were collected from two community and five household latrines sites. Community latrine samples were taken before and after daily cleaning, while household samples were collected at midday, to reflect normal conditions. Concentrations of total coliforms and Escherichia coli were measured using membrane filtration methods. Results found almost no differences between bacterial contamination on latrine surfaces in community and household latrines, with the exception of latrine slabs/seats that were more contaminated in the community latrines under dirty conditions. The study also identified surfaces with higher levels of contamination. Findings demonstrated that well-maintained community latrines may be as clean, or cleaner, than household latrines and support the use of community latrines for improving access to sanitation infrastructure in a low-income country setting.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010

          The Lancet, 380(9859), 2224-2260
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Microbial Biogeography of Public Restroom Surfaces

            We spend the majority of our lives indoors where we are constantly exposed to bacteria residing on surfaces. However, the diversity of these surface-associated communities is largely unknown. We explored the biogeographical patterns exhibited by bacteria across ten surfaces within each of twelve public restrooms. Using high-throughput barcoded pyrosequencing of the 16 S rRNA gene, we identified 19 bacterial phyla across all surfaces. Most sequences belonged to four phyla: Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria. The communities clustered into three general categories: those found on surfaces associated with toilets, those on the restroom floor, and those found on surfaces routinely touched with hands. On toilet surfaces, gut-associated taxa were more prevalent, suggesting fecal contamination of these surfaces. Floor surfaces were the most diverse of all communities and contained several taxa commonly found in soils. Skin-associated bacteria, especially the Propionibacteriaceae, dominated surfaces routinely touched with our hands. Certain taxa were more common in female than in male restrooms as vagina-associated Lactobacillaceae were widely distributed in female restrooms, likely from urine contamination. Use of the SourceTracker algorithm confirmed many of our taxonomic observations as human skin was the primary source of bacteria on restroom surfaces. Overall, these results demonstrate that restroom surfaces host relatively diverse microbial communities dominated by human-associated bacteria with clear linkages between communities on or in different body sites and those communities found on restroom surfaces. More generally, this work is relevant to the public health field as we show that human-associated microbes are commonly found on restroom surfaces suggesting that bacterial pathogens could readily be transmitted between individuals by the touching of surfaces. Furthermore, we demonstrate that we can use high-throughput analyses of bacterial communities to determine sources of bacteria on indoor surfaces, an approach which could be used to track pathogen transmission and test the efficacy of hygiene practices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative surface-to-hand and fingertip-to-mouth transfer efficiency of gram-positive bacteria, gram-negative bacteria, and phage.

              To determine the transfer efficiency of micro-organisms from fomites to hands and the subsequent transfer from the fingertip to the lip. Volunteers hands were sampled after the normal usage of fomites seeded with a pooled culture of a Gram-positive bacterium (Micrococcus luteus), a Gram-negative bacterium (Serratia rubidea) and phage PRD-1 (Period A). Activities included wringing out a dishcloth/sponge, turning on/off a kitchen faucet, cutting up a carrot, making hamburger patties, holding a phone receiver, and removing laundry from the washing machine. Transfer efficiencies were 38.47% to 65.80% and 27.59% to 40.03% for the phone receiver and faucet, respectively. Transfer efficiencies from porous fomites were <0.01%. In most cases, M.luteus was transferred most efficiently, followed by phage PRD-1 and S. rubidea. When the volunteers' fingertips were inoculated with the pooled organisms and held to the lip area (Period B), transfer rates of 40.99%, 33.97%, and 33.90% occurred with M. luteus, S. rubidea, and PRD-1, respectively. The highest bacteral transfer rates from fomites to the hands were seen with the hard, non-porous surfaces. Even with low transfer rates, the numbers of bacteria transferred to the hands were still high (up to 10(6) cells). Transfer of bacteria from the fingertip to the lip is similar to that observed from hard surfaces to hands. Infectious doses of pathogens may be transferred to the mouth after handling an everyday contaminated household object.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                17 January 2019
                January 2019
                : 16
                : 2
                : 257
                Affiliations
                [1 ]Water, Health, and Applied Microbiology Lab (WHAM Lab), College of Public Health, Temple University, Philadelphia, PA 19122, USA; smcginnis@ 123456temple.edu
                [2 ]Aerosan Toilets, Halifax, Nova Scotia B4A 4J8, Canada; dianna@ 123456aerosantoilets.ca (D.M.); prakash@ 123456aerosantoilets.ca (P.A.)
                Author notes
                Article
                ijerph-16-00257
                10.3390/ijerph16020257
                6352220
                30658441
                55b50255-d09d-45ca-b4d2-2958cf0b753b
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 December 2018
                : 10 January 2019
                Categories
                Article

                Public health
                wash,community sanitation,global health
                Public health
                wash, community sanitation, global health

                Comments

                Comment on this article