12
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Infectious Waste Management Strategy during COVID-19 Pandemic in Africa: an Integrated Decision-Making Framework for Selecting Sustainable Technologies

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The emerging and underdeveloped countries in Africa face numerous difficulties managing infectious waste during the SARS-CoV-2 disease, known as the COVID-19 pandemic. Hence, the main aim of this paper is to help decision-makers in African countries to select the best available waste management strategy during the COVID-19 pandemic. The present research undertakes seamless assessment and prioritization of infectious solid waste (SW) and wastewater (WW) treatment technologies based on a criteria system involving four dimensions, i.e., environment-safety, technology, economics, and sociopolitics. A combined approach that integrates the results of life-cycle assessments and life-cycle costs (LCA–LCC), analytic hierarchy process (AHP), and VIKOR method in an interval-valued fuzzy (IVF) environment is proposed. The results reveal that combined incineration and chemical disinfection approach, and combined chlorination and ultraviolet irradiation are the most sustainable technologies for managing infectious SW and WW treatment in the present context. The proposed approach, alongside the findings of the study, constitutes a reference to devise urgent planning for contagious waste management in African countries as well as developing countries worldwide.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

          To the Editor: A novel human coronavirus that is now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (formerly called HCoV-19) emerged in Wuhan, China, in late 2019 and is now causing a pandemic. 1 We analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus. 2 We evaluated the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on various surfaces and estimated their decay rates using a Bayesian regression model (see the Methods section in the Supplementary Appendix, available with the full text of this letter at NEJM.org). SARS-CoV-2 nCoV-WA1-2020 (MN985325.1) and SARS-CoV-1 Tor2 (AY274119.3) were the strains used. Aerosols (<5 μm) containing SARS-CoV-2 (105.25 50% tissue-culture infectious dose [TCID50] per milliliter) or SARS-CoV-1 (106.75-7.00 TCID50 per milliliter) were generated with the use of a three-jet Collison nebulizer and fed into a Goldberg drum to create an aerosolized environment. The inoculum resulted in cycle-threshold values between 20 and 22, similar to those observed in samples obtained from the upper and lower respiratory tract in humans. Our data consisted of 10 experimental conditions involving two viruses (SARS-CoV-2 and SARS-CoV-1) in five environmental conditions (aerosols, plastic, stainless steel, copper, and cardboard). All experimental measurements are reported as means across three replicates. SARS-CoV-2 remained viable in aerosols throughout the duration of our experiment (3 hours), with a reduction in infectious titer from 103.5 to 102.7 TCID50 per liter of air. This reduction was similar to that observed with SARS-CoV-1, from 104.3 to 103.5 TCID50 per milliliter (Figure 1A). SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces (Figure 1A), although the virus titer was greatly reduced (from 103.7 to 100.6 TCID50 per milliliter of medium after 72 hours on plastic and from 103.7 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). The stability kinetics of SARS-CoV-1 were similar (from 103.4 to 100.7 TCID50 per milliliter after 72 hours on plastic and from 103.6 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). On copper, no viable SARS-CoV-2 was measured after 4 hours and no viable SARS-CoV-1 was measured after 8 hours. On cardboard, no viable SARS-CoV-2 was measured after 24 hours and no viable SARS-CoV-1 was measured after 8 hours (Figure 1A). Both viruses had an exponential decay in virus titer across all experimental conditions, as indicated by a linear decrease in the log10TCID50 per liter of air or milliliter of medium over time (Figure 1B). The half-lives of SARS-CoV-2 and SARS-CoV-1 were similar in aerosols, with median estimates of approximately 1.1 to 1.2 hours and 95% credible intervals of 0.64 to 2.64 for SARS-CoV-2 and 0.78 to 2.43 for SARS-CoV-1 (Figure 1C, and Table S1 in the Supplementary Appendix). The half-lives of the two viruses were also similar on copper. On cardboard, the half-life of SARS-CoV-2 was longer than that of SARS-CoV-1. The longest viability of both viruses was on stainless steel and plastic; the estimated median half-life of SARS-CoV-2 was approximately 5.6 hours on stainless steel and 6.8 hours on plastic (Figure 1C). Estimated differences in the half-lives of the two viruses were small except for those on cardboard (Figure 1C). Individual replicate data were noticeably “noisier” (i.e., there was more variation in the experiment, resulting in a larger standard error) for cardboard than for other surfaces (Fig. S1 through S5), so we advise caution in interpreting this result. We found that the stability of SARS-CoV-2 was similar to that of SARS-CoV-1 under the experimental circumstances tested. This indicates that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic. 3,4 Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days (depending on the inoculum shed). These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, 5 and they provide information for pandemic mitigation efforts.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A scaling method for priorities in hierarchical structures

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19

              The COVID-19 pandemic has had growing environmental consequences related to plastic use and follow-up waste, but more urgent health issues have far overshadowed the potential impacts. This paper gives a prospective outlook on how the disruption caused by COVID-19 can act as a catalyst for short-term and long-term changes in plastic waste management practices throughout the world. The impact of the pandemic and epidemic following through the life cycles of various plastic products, particularly those needed for personal protection and healthcare, is assessed. The energy and environmental footprints of these product systems have increased rapidly in response to the surge in the number of COVID-19 cases worldwide, while critical hazardous waste management issues are emerging due to the need to ensure destruction of residual pathogens in household and medical waste. The concept of Plastic Waste Footprint (PWF) is proposed to capture the environmental footprint of a plastic product throughout its entire life cycle. Emerging challenges in waste management during and after the pandemic are discussed from the perspective of novel research and environmental policies. The sudden shift in waste composition and quantity highlights the need for a dynamically reponsive waste management system. Six future research directions are suggested to mitigate the potential impacts of the pandemic on waste management systems.
                Bookmark

                Author and article information

                Contributors
                Belhadi.amine@outlook.com
                Journal
                Environ Manage
                Environ Manage
                Environmental Management
                Springer US (New York )
                0364-152X
                1432-1009
                23 October 2020
                : 1-20
                Affiliations
                [1 ]GRID grid.411840.8, ISNI 0000 0001 0664 9298, Cadi Ayyad University, ; Marrakech, Morocco
                [2 ]GRID grid.462199.1, ISNI 0000 0001 2105 7899, EDHEC Business School, ; Roubaix, France
                [3 ]GRID grid.12527.33, ISNI 0000 0001 0662 3178, School of Economics and Management, , Tsinghua University, ; Beijing, China
                [4 ]GRID grid.411840.8, ISNI 0000 0001 0664 9298, ENSA-Safi, , Cadi Ayyad University, ; Marrakech, Morocco
                [5 ]Gopal Narayan Singh University, Jamuhar, India
                Author information
                http://orcid.org/0000-0003-4831-4941
                Article
                1375
                10.1007/s00267-020-01375-5
                7581694
                33095317
                31eec756-e9df-421c-943a-b47cb8549970
                © Springer Science+Business Media, LLC, part of Springer Nature 2020

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 20 June 2020
                : 5 October 2020
                Categories
                Article

                Environmental management, Policy & Planning
                covid-19,municipal waste management,waste water,ahp–vikor,interval-valued fuzzy,solid waste

                Comments

                Comment on this article