10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantification of free-living activity patterns using accelerometry in adults with mental illness

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Physical activity is disrupted in many psychiatric disorders. Advances in everyday technologies – such as accelerometers in smart phones – opens exciting possibilities for non-intrusive acquisition of activity data. Successful exploitation of this opportunity requires the validation of analytical methods that can capture the full movement spectrum. The study aim was to demonstrate an analytical approach to characterise accelerometer-derived activity patterns. Here, we use statistical methods to characterize accelerometer-derived activity patterns from a heterogeneous sample of 99 community-based adults with mental illnesses. Diagnoses were screened using the Mini International Neuropsychiatric Interview, and participants wore accelerometers for one week. We studied the relative ability of simple (exponential), complex (heavy-tailed), and composite models to explain patterns of activity and inactivity. Activity during wakefulness was a composite of brief random (exponential) movements and complex (heavy-tailed) processes, whereas movement during sleep lacked the heavy-tailed component. In contrast, inactivity followed a heavy-tailed process, lacking the random component. Activity patterns differed in nature between those with a diagnosis of bipolar disorder and a primary psychotic disorder. These results show the potential of complex models to quantify the rich nature of human movement captured by accelerometry during wake and sleep, and the interaction with diagnosis and health.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          The log-dynamic brain: how skewed distributions affect network operations.

          We often assume that the variables of functional and structural brain parameters - such as synaptic weights, the firing rates of individual neurons, the synchronous discharge of neural populations, the number of synaptic contacts between neurons and the size of dendritic boutons - have a bell-shaped distribution. However, at many physiological and anatomical levels in the brain, the distribution of numerous parameters is in fact strongly skewed with a heavy tail, suggesting that skewed (typically lognormal) distributions are fundamental to structural and functional brain organization. This insight not only has implications for how we should collect and analyse data, it may also help us to understand how the different levels of skewed distributions - from synapses to cognition - are related to each other.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Harnessing Context Sensing to Develop a Mobile Intervention for Depression

            Background Mobile phone sensors can be used to develop context-aware systems that automatically detect when patients require assistance. Mobile phones can also provide ecological momentary interventions that deliver tailored assistance during problematic situations. However, such approaches have not yet been used to treat major depressive disorder. Objective The purpose of this study was to investigate the technical feasibility, functional reliability, and patient satisfaction with Mobilyze!, a mobile phone- and Internet-based intervention including ecological momentary intervention and context sensing. Methods We developed a mobile phone application and supporting architecture, in which machine learning models (ie, learners) predicted patients’ mood, emotions, cognitive/motivational states, activities, environmental context, and social context based on at least 38 concurrent phone sensor values (eg, global positioning system, ambient light, recent calls). The website included feedback graphs illustrating correlations between patients’ self-reported states, as well as didactics and tools teaching patients behavioral activation concepts. Brief telephone calls and emails with a clinician were used to promote adherence. We enrolled 8 adults with major depressive disorder in a single-arm pilot study to receive Mobilyze! and complete clinical assessments for 8 weeks. Results Promising accuracy rates (60% to 91%) were achieved by learners predicting categorical contextual states (eg, location). For states rated on scales (eg, mood), predictive capability was poor. Participants were satisfied with the phone application and improved significantly on self-reported depressive symptoms (betaweek = –.82, P < .001, per-protocol Cohen d = 3.43) and interview measures of depressive symptoms (betaweek = –.81, P < .001, per-protocol Cohen d = 3.55). Participants also became less likely to meet criteria for major depressive disorder diagnosis (bweek = –.65, P = .03, per-protocol remission rate = 85.71%). Comorbid anxiety symptoms also decreased (betaweek = –.71, P < .001, per-protocol Cohen d = 2.58). Conclusions Mobilyze! is a scalable, feasible intervention with preliminary evidence of efficacy. To our knowledge, it is the first ecological momentary intervention for unipolar depression, as well as one of the first attempts to use context sensing to identify mental health-related states. Several lessons learned regarding technical functionality, data mining, and software development process are discussed. Trial Registration Clinicaltrials.gov NCT01107041; http://clinicaltrials.gov/ct2/show/NCT01107041 (Archived by WebCite at http://www.webcitation.org/60CVjPH0n)
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Health and the mobile phone.

                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                07 March 2017
                2017
                : 7
                : 43174
                Affiliations
                [1 ]Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane , Queensland 4029, Australia
                [2 ]Centre for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane , Queensland 4029, Australia
                [3 ]The Royal Brisbane and Women’s Hospital, Brisbane , Queensland 4029, Australia
                Author notes
                Article
                srep43174
                10.1038/srep43174
                5339808
                28266563
                21f6c167-f95f-41e9-b2e0-4adeb525ec3c
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 11 April 2016
                : 23 January 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article