14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Red blood cell dysfunction: a new player in cardiovascular disease

        1 , 2 , 1 , 1 , 1
      Cardiovascular Research
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The primary role of red blood cells (RBCs) is to transport oxygen to the tissues and carbon dioxide to the lungs. However, emerging evidence suggests an important role of the RBC beyond being just a passive carrier of the respiratory gases. The RBCs are of importance for redox balance and are actively involved in the regulation of vascular tone, especially during hypoxic and ischaemic conditions by the release of nitric oxide (NO) bioactivity and adenosine triphosphate. The role of the RBC has gained further interest after recent discoveries demonstrating a markedly altered function of the cell in several pathological conditions. Such alterations include increased adhesion capability, increased formation of reactive oxygen species as well as altered protein content and enzymatic activities. Beyond signalling increased oxidative stress, the altered function of RBCs is characterized by reduced export of NO bioactivity regulated by increased arginase activity. Of further importance, the altered function of RBCs has important implications for several cardiovascular disease conditions. RBCs have been shown to induce endothelial dysfunction and to increase cardiac injury during ischaemia-reperfusion in diabetes mellitus. Finally, this new knowledge has led to novel therapeutic possibilities to intervene against cardiovascular disease by targeting signalling in the RBC. These novel data open up an entirely new view on the underlying pathophysiological mechanisms behind the cardiovascular disease processes in diabetes mellitus mediated by the RBC. This review highlights the current knowledge regarding the role of RBCs in cardiovascular regulation with focus on their importance for cardiovascular dysfunction in pathological conditions and therapeutic possibilities for targeting RBCs in cardiovascular disease.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease.

          The efficient sequestration of hemoglobin by the red blood cell membrane and the presence of multiple hemoglobin clearance mechanisms suggest a critical need to prevent the buildup of this molecule in the plasma. A growing list of clinical manifestations attributed to hemoglobin release in a variety of acquired and iatrogenic hemolytic disorders suggests that hemolysis and hemoglobinemia should be considered as a novel mechanism of human disease. Pertinent scientific literature databases and references were searched through October 2004 using terms that encompassed various aspects of hemolysis, hemoglobin preparations, clinical symptoms associated with plasma hemoglobin, nitric oxide in hemolysis, anemia, pulmonary hypertension, paroxysmal nocturnal hemoglobinuria, and sickle-cell disease. Hemoglobin is released into the plasma from the erythrocyte during intravascular hemolysis in hereditary, acquired, and iatrogenic hemolytic conditions. When the capacity of protective hemoglobin-scavenging mechanisms has been saturated, levels of cell-free hemoglobin increase in the plasma, resulting in the consumption of nitric oxide and clinical sequelae. Nitric oxide plays a major role in vascular homeostasis and has been shown to be a critical regulator of basal and stress-mediated smooth muscle relaxation and vasomotor tone, endothelial adhesion molecule expression, and platelet activation and aggregation. Thus, clinical consequences of excessive cell-free plasma hemoglobin levels during intravascular hemolysis or the administration of hemoglobin preparations include dystonias involving the gastrointestinal, cardiovascular, pulmonary, and urogenital systems, as well as clotting disorders. Many of the clinical sequelae of intravascular hemolysis in a prototypic hemolytic disease, paroxysmal nocturnal hemoglobinuria, are readily explained by hemoglobin-mediated nitric oxide scavenging. A growing body of evidence supports the existence of a novel mechanism of human disease, namely, hemolysis-associated smooth muscle dystonia, vasculopathy, and endothelial dysfunction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide signalling in cardiovascular health and disease

            Nitric oxide (NO) signalling has pleiotropic roles in biology and a crucial function in cardiovascular homeostasis. Tremendous knowledge has been accumulated on the mechanisms of the nitric oxide synthase (NOS)-NO pathway, but how this highly reactive, free radical gas signals to specific targets for precise regulation of cardiovascular function remains the focus of much intense research. In this Review, we summarize the updated paradigms on NOS regulation, NO interaction with reactive oxidant species in specific subcellular compartments, and downstream effects of NO in target cardiovascular tissues, while emphasizing the latest developments of molecular tools and biomarkers to modulate and monitor NO production and bioavailability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pulmonary hypertension as a risk factor for death in patients with sickle cell disease.

              The prevalence of pulmonary hypertension in adults with sickle cell disease, the mechanism of its development, and its prospective prognostic significance are unknown. We performed Doppler echocardiographic assessments of pulmonary-artery systolic pressure in 195 consecutive patients (82 men and 113 women; mean [+/-SD] age, 36+/-12 years). Pulmonary hypertension was prospectively defined as a tricuspid regurgitant jet velocity of at least 2.5 m per second. Patients were followed for a mean of 18 months, and data were censored at the time of death or loss to follow-up. Doppler-defined pulmonary hypertension occurred in 32 percent of patients. Multiple logistic-regression analysis, with the use of the dichotomous variable of a tricuspid regurgitant jet velocity of less than 2.5 m per second or 2.5 m per second or more, identified a self-reported history of cardiovascular or renal complications, increased systolic blood pressure, high lactate dehydrogenase levels (a marker of hemolysis), high levels of alkaline phosphatase, and low transferrin levels as significant independent correlates of pulmonary hypertension. The fetal hemoglobin level, white-cell count, and platelet count and the use of hydroxyurea therapy were unrelated to pulmonary hypertension. A tricuspid regurgitant jet velocity of at least 2.5 m per second, as compared with a velocity of less than 2.5 m per second, was strongly associated with an increased risk of death (rate ratio, 10.1; 95 percent confidence interval, 2.2 to 47.0; P<0.001) and remained so after adjustment for other possible risk factors in a proportional-hazards regression model. Pulmonary hypertension, diagnosed by Doppler echocardiography, is common in adults with sickle cell disease. It appears to be a complication of chronic hemolysis, is resistant to hydroxyurea therapy, and confers a high risk of death. Therapeutic trials targeting this population of patients are indicated. Copyright 2004 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                Cardiovascular Research
                Oxford University Press (OUP)
                0008-6363
                1755-3245
                September 01 2019
                September 01 2019
                June 14 2019
                September 01 2019
                September 01 2019
                June 14 2019
                : 115
                : 11
                : 1596-1605
                Affiliations
                [1 ]Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
                [2 ]Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden
                Article
                10.1093/cvr/cvz156
                31198931
                16f35a41-6318-42fc-840f-4bcd7c0f8a44
                © 2019

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article