10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Extended use of face masks during the COVID-19 pandemic - Thermal conditioning and spray-on surface disinfection

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The current COVID-19 pandemic has resulted in globally constrained supplies for face masks and personal protective equipment (PPE). Production capacity is limited in many countries and the future course of the pandemic will likely continue with shortages for high quality masks and PPE in the foreseeable future. Hence, expectations are that mask reuse, extended wear and similar approaches will enhance the availability of personal protective measures. Repeated thermal disinfection could be an important option and likely easier implemented in some situations, at least on the small scale, than UV illumination, irradiation or hydrogen peroxide vapor exposure. An overview on thermal responses and ongoing filtration performance of multiple face mask types is provided. Most masks have adequate material properties to survive a few cycles (i.e. 30 min disinfection steps) of thermal exposure in the 75 °C regime. Some are more easily affected, as seen by the fusing of plastic liner or warping, given that preferred conditioning temperatures are near the softening point for some of the plastics and fibers used in these masks. Hence adequate temperature control is equally important. As guidance, disinfectants sprayed via dilute solutions maintain a surface presence over extended time at 25 and 37 °C. Some spray-on alcohol-based solutions containing disinfectants were gently applied to the top surface of masks. Neither moderate thermal aging (less than 24 h at 80 and 95 °C) nor gentle application of surface disinfectant sprays resulted in measurable loss of mask filter performance. Subject to bio-medical concurrence (additional checks for virus kill efficiency) and the use of low risk non-toxic disinfectants, such strategies, either individually or combined, by offering additional anti-viral properties or short term refreshing, may complement reuse options of professional masks or the now ubiquitous custom-made face masks with their often unknown filtration effectiveness.

          Graphical abstract

          Highlights

          • Thermal conditioning and gentle surface disinfection to aid extended use of masks.

          • Adequate material properties for most masks to survive a few cycles at 75 °C.

          • Temperature control important, as conditioning is near the softening point for some of the plastics and fibers used.

          • Neither moderate thermal exposure nor gentle application of surface disinfectant leads to measurable loss of mask filter performance.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation

          Structure of the nCoV trimeric spike The World Health Organization has declared the outbreak of a novel coronavirus (2019-nCoV) to be a public health emergency of international concern. The virus binds to host cells through its trimeric spike glycoprotein, making this protein a key target for potential therapies and diagnostics. Wrapp et al. determined a 3.5-angstrom-resolution structure of the 2019-nCoV trimeric spike protein by cryo–electron microscopy. Using biophysical assays, the authors show that this protein binds at least 10 times more tightly than the corresponding spike protein of severe acute respiratory syndrome (SARS)–CoV to their common host cell receptor. They also tested three antibodies known to bind to the SARS-CoV spike protein but did not detect binding to the 2019-nCoV spike protein. These studies provide valuable information to guide the development of medical counter-measures for 2019-nCoV. Science, this issue p. 1260
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

            To the Editor: A novel human coronavirus that is now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (formerly called HCoV-19) emerged in Wuhan, China, in late 2019 and is now causing a pandemic. 1 We analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus. 2 We evaluated the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on various surfaces and estimated their decay rates using a Bayesian regression model (see the Methods section in the Supplementary Appendix, available with the full text of this letter at NEJM.org). SARS-CoV-2 nCoV-WA1-2020 (MN985325.1) and SARS-CoV-1 Tor2 (AY274119.3) were the strains used. Aerosols (<5 μm) containing SARS-CoV-2 (105.25 50% tissue-culture infectious dose [TCID50] per milliliter) or SARS-CoV-1 (106.75-7.00 TCID50 per milliliter) were generated with the use of a three-jet Collison nebulizer and fed into a Goldberg drum to create an aerosolized environment. The inoculum resulted in cycle-threshold values between 20 and 22, similar to those observed in samples obtained from the upper and lower respiratory tract in humans. Our data consisted of 10 experimental conditions involving two viruses (SARS-CoV-2 and SARS-CoV-1) in five environmental conditions (aerosols, plastic, stainless steel, copper, and cardboard). All experimental measurements are reported as means across three replicates. SARS-CoV-2 remained viable in aerosols throughout the duration of our experiment (3 hours), with a reduction in infectious titer from 103.5 to 102.7 TCID50 per liter of air. This reduction was similar to that observed with SARS-CoV-1, from 104.3 to 103.5 TCID50 per milliliter (Figure 1A). SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces (Figure 1A), although the virus titer was greatly reduced (from 103.7 to 100.6 TCID50 per milliliter of medium after 72 hours on plastic and from 103.7 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). The stability kinetics of SARS-CoV-1 were similar (from 103.4 to 100.7 TCID50 per milliliter after 72 hours on plastic and from 103.6 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). On copper, no viable SARS-CoV-2 was measured after 4 hours and no viable SARS-CoV-1 was measured after 8 hours. On cardboard, no viable SARS-CoV-2 was measured after 24 hours and no viable SARS-CoV-1 was measured after 8 hours (Figure 1A). Both viruses had an exponential decay in virus titer across all experimental conditions, as indicated by a linear decrease in the log10TCID50 per liter of air or milliliter of medium over time (Figure 1B). The half-lives of SARS-CoV-2 and SARS-CoV-1 were similar in aerosols, with median estimates of approximately 1.1 to 1.2 hours and 95% credible intervals of 0.64 to 2.64 for SARS-CoV-2 and 0.78 to 2.43 for SARS-CoV-1 (Figure 1C, and Table S1 in the Supplementary Appendix). The half-lives of the two viruses were also similar on copper. On cardboard, the half-life of SARS-CoV-2 was longer than that of SARS-CoV-1. The longest viability of both viruses was on stainless steel and plastic; the estimated median half-life of SARS-CoV-2 was approximately 5.6 hours on stainless steel and 6.8 hours on plastic (Figure 1C). Estimated differences in the half-lives of the two viruses were small except for those on cardboard (Figure 1C). Individual replicate data were noticeably “noisier” (i.e., there was more variation in the experiment, resulting in a larger standard error) for cardboard than for other surfaces (Fig. S1 through S5), so we advise caution in interpreting this result. We found that the stability of SARS-CoV-2 was similar to that of SARS-CoV-1 under the experimental circumstances tested. This indicates that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic. 3,4 Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days (depending on the inoculum shed). These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, 5 and they provide information for pandemic mitigation efforts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Humidity-Dependent Decay of Viruses, but Not Bacteria, in Aerosols and Droplets Follows Disinfection Kinetics

                Bookmark

                Author and article information

                Contributors
                Journal
                Polym Degrad Stab
                Polym. Degrad. Stab
                Polymer Degradation and Stability
                Published by Elsevier Ltd.
                0141-3910
                1873-2321
                4 June 2020
                4 June 2020
                : 109251
                Affiliations
                [a ]Sandia National Laboratories, Organic Materials Science Dept.1853, Albuquerque, NM, 87185-1411, USA
                [b ]Sandia National Laboratories, Aerosol Characterization Team in Depts. 6633/6775, Albuquerque, NM, 87185- 1104, USA
                [c ]Institute of Health and Biomedical Innovation, Science and Engineering Faculty and the Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
                Author notes
                []Corresponding author. mccelin@ 123456sandia.gov
                Article
                S0141-3910(20)30183-X 109251
                10.1016/j.polymdegradstab.2020.109251
                7271865
                15be744d-a568-42f7-bb60-d55132bc0c75
                © 2020 Published by Elsevier Ltd.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 18 May 2020
                : 29 May 2020
                : 2 June 2020
                Categories
                Article

                covid-19,ppe/mask supplies,extended use and performance,thermal and surface disinfection,filtration efficiency

                Comments

                Comment on this article