62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      New and Future Developments in Microbial Biotechnology and Bioengineering 

      Biodiversity of the Genus Penicillium in Different Habitats

      edited_book

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references141

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.

          We announce the release of the fourth version of MEGA software, which expands on the existing facilities for editing DNA sequence data from autosequencers, mining Web-databases, performing automatic and manual sequence alignment, analyzing sequence alignments to estimate evolutionary distances, inferring phylogenetic trees, and testing evolutionary hypotheses. Version 4 includes a unique facility to generate captions, written in figure legend format, in order to provide natural language descriptions of the models and methods used in the analyses. This facility aims to promote a better understanding of the underlying assumptions used in analyses, and of the results generated. Another new feature is the Maximum Composite Likelihood (MCL) method for estimating evolutionary distances between all pairs of sequences simultaneously, with and without incorporating rate variation among sites and substitution pattern heterogeneities among lineages. This MCL method also can be used to estimate transition/transversion bias and nucleotide substitution pattern without knowledge of the phylogenetic tree. This new version is a native 32-bit Windows application with multi-threading and multi-user supports, and it is also available to run in a Linux desktop environment (via the Wine compatibility layer) and on Intel-based Macintosh computers under the Parallels program. The current version of MEGA is available free of charge at (http://www.megasoftware.net).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes.

            We constructed nine sets of oligonucleotide primers on the basis of the results of DNA hybridization of cloned genes from Neurospora crassa and Aspergillus nidulans to the genomes of select filamentous ascomycetes and deuteromycetes (with filamentous ascomycete affiliations). Nine sets of primers were designed to amplify segments of DNA that span one or more introns in conserved genes. PCR DNA amplification with the nine primer sets with genomic DNA from ascomycetes, deuteromycetes, basidiomycetes, and plants revealed that five of the primer sets amplified a product only from DNA of the filamentous ascomycetes and deuteromycetes. The five primer sets were constructed from the N. crassa genes for histone 3, histone 4, beta-tubulin, and the plasma membrane ATPase. With these five primer sets, polymorphisms were observed in both the size of and restriction enzyme sites in the amplified products from the filamentous ascomycetes. The primer sets described here may provide useful tools for phylogenetic studies and genome analyses in filamentous ascomycetes and deuteromycetes (with ascomycete affiliations), as well as for the rapid differentiation of fungal species by PCR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit.

              In an effort to establish a suitable alternative to the widely used 18S rRNA system for molecular systematics of fungi, we examined the nuclear gene RPB2, encoding the second largest subunit of RNA polymerase II. Because RPB2 is a single-copy gene of large size with a modest rate of evolutionary change, it provides good phylogenetic resolution of Ascomycota. While the RPB2 and 18S rDNA phylogenies were highly congruent, the RPB2 phylogeny did result in much higher bootstrap support for all the deeper branches within the orders and for several branches between orders of the Ascomycota. There are several strongly supported phylogenetic conclusions. The Ascomycota is composed of three major lineages: Archiascomycetes, Saccharomycetales, and Euascomycetes. Within the Euascomycetes, plectomycetes, and pyrenomycetes are monophyletic groups, and the Pleosporales and Dothideales are distinct sister groups within the Loculoascomycetes. We confirm the placement of Neolecta within the Archiascomycetes, suggesting that fruiting body formation and forcible discharge of ascospores were characters gained early in the evolution of the Ascomycota. These findings show that a slowly evolving protein-coding gene such as RPB2 is useful for diagnosing phylogenetic relationships among fungi.
                Bookmark

                Author and book information

                Book Chapter
                2018
                : 3-18
                10.1016/B978-0-444-63501-3.00001-6
                e3b4b98f-0b0e-4f29-8e7e-d0c6a0220628
                History

                Comments

                Comment on this book